
Beyond fat-trees without antennae, mirrors, and disco-balls
Simon Kassing

ETH Zürich

simon.kassing@inf.ethz.ch

Asaf Valadarsky

Hebrew University of Jerusalem

asaf.valadarsky@mail.huji.ac.il

Gal Shahaf

Hebrew University of Jerusalem

gal.shahaf@mail.huji.ac.il

Michael Schapira

Hebrew University of Jerusalem

schapiram@huji.ac.il

Ankit Singla

ETH Zürich

ankit.singla@inf.ethz.ch

Abstract
Recent studies have observed that large data center networks often

have a few hotspots while most of the network is underutilized.

Consequently, numerous data center network designs have ex-

plored the approach of identifying these communication hotspots

in real-time and eliminating them by leveraging flexible optical or

wireless connections to dynamically alter the network topology.

These proposals are based on the premise that statically wired

network topologies, which lack the opportunity for such online

optimization, are fundamentally inefficient, and must be built at

uniform full capacity to handle unpredictably skewed traffic.

We show this assumption to be false. Our results establish that

state-of-the-art static networks can also achieve the performance

benefits claimed by dynamic, reconfigurable designs of the same

cost: for the skewed traffic workloads used to make the case for

dynamic networks, the evaluated static networks can achieve

performance matching full-bandwidth fat-trees at two-thirds of the

cost. Surprisingly, this can be accomplished even without relying

on any form of online optimization, including the optimization of

routing configuration in response to the traffic demands.

Our results substantially lower the barriers for improving upon

today’s data centers by showing that a static, cabling-friendly topol-

ogy built using commodity equipment yields superior performance

when combined with well-understood routing methods.

CCS Concepts
• Networks→ Data center networks;

Keywords
Data center; Topology; Routing

ACM Reference format:
Simon Kassing, Asaf Valadarsky, Gal Shahaf, Michael Schapira, and Ankit

Singla. 2017. Beyond fat-trees without antennae, mirrors, and disco-balls.

In Proceedings of SIGCOMM ’17, Los Angeles, CA, USA, August 21–25, 2017,
14 pages.

https://doi.org/10.1145/3098822.3098836

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to

Association for Computing Machinery.

ACM ISBN 978-1-4503-4653-5/17/08. . . $15.00

https://doi.org/10.1145/3098822.3098836

1 Introduction
Virtually every popular Web service today is backed by data center

infrastructure. With the growth of these services, the supporting

infrastructure has also acquired massive scale, with data centers

being designed with as many as 100,000 servers [15]. For such

large facilities, engineering full-bandwidth connectivity between

all pairs of servers entails significant effort and expense. Further,

for many facilities, at any given time, only a fraction of servers may

require high-bandwidth connectivity [13, 17], making such a design

seem wasteful. However, traditional topologies like the fat-tree [3]

present network designers with only two choices: (a) either build

an expensive, rearrangeably non-blocking network; or (b) build

a cheaper, oversubscribed network that does not provide high-

bandwidth connectivity even to small (albeit arbitrary) subsets of

the server pool, thereby needing aggressive workload management.

Over the past few years, numerous data center network designs

have tackled this problem based on the idea of adapting the topology

itself to the traffic demands [10, 12–14, 17, 18, 24, 27, 35, 40]. The key

insight in this literature is that if only a few network hotspots exist

at any time, perhaps through online measurement, these hotspots

can be identified, and the network topology can be optimized

dynamically to alleviate them. Reconfigurable wireless and optical

elements enable such online adjustments of connectivity. For many

workloads, such a network can match the performance of a much

more expensive interconnect that provides full bandwidth between

all pairs of servers at all times. The ingenuity of the many proposals

along these lines lies in the varied capabilities of the reconfigurable

elements, how they are connected together (including movable

wireless antennae [17], ceiling mirrors [18, 40], and disco-balls [13]),

and the algorithms for online management of connectivity.

This broad approach has obvious, intuitive appeal, and indeed,

some of the evaluations show performance similar to a full-

bandwidth fat-tree at 25-40% lower cost for some workloads [13, 18].

Not only are such results impressive, it is also unclear whether there

are any other viable options besides full-bandwidth topologies and

such dynamic topologies. Before fleshing out their reconfigurable

optics-based architecture, Helios [12], its authors summarized the

(2010) state of data center network topology design as follows:

“Unfortunately, given current data center network architec-
tures, the only way to provision required bandwidth between
dynamically changing sets of nodes is to build a non-blocking
switch fabric at the scale of an entire data center, with
potentially hundreds of thousands of ports.”

https://doi.org/10.1145/3098822.3098836
https://doi.org/10.1145/3098822.3098836

SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA S. Kassing et al.

More recently, the 3D-beamforming proposal [40] (2012) made a

similar assessment, and FireFly [18] (2014) explicitly considered

only two design possibilities: a full bisection-bandwidth network

and topology dynamism. This literature has thus implied that

static networks, which lack any opportunity for online topology

optimization, are inherently inefficient for unpredictably skewed

network traffic, and consequently, that dynamic topologies are the

only alternative to expensive full-bandwidth fabrics.

The goals of our work are to examine this presumption critically,

explore the utility and limits of topology dynamism, develop

an understanding of the relative strength of static and dynamic

networks, and outline directions for improving upon today’s data

centers. Towards these goals we make the following contributions:

(1) A metric for network flexibility: So far, there has been

no established metric for the flexibility of topologies towards ac-

commodating skewed traffic, with practitioners relying on specific

workload instances for evaluations. We thus propose an intuitive

metric capturing a topology’s performance under traffic skew.

(2) A comparison of static and dynamic topologies: We com-

pare static and dynamic networks under the assumptions of optimal

topology dynamics and traffic engineering. This comparison uses a

linear program optimization of a fluid-flow model, thus abstracting

out possible inefficiencies of routing, congestion control, and the

traffic-estimation and optimization needed for dynamic networks.

Our results show that at equal-cost, recently proposed static

networks outperform dynamic networks in this setting, with both

achieving substantial performance benefits over fat-trees.

(3) Routing on static networks: Translating performance in

fluid-flow models to that at packet-level can be challenging,

particularly with dynamic, unpredictable traffic. Surprisingly, we

find that even simple, oblivious routing achieves high performance

for the static networks we consider. Thus, even online optimization

of routes is not essential for achieving efficiency substantially higher

than fat-trees and comparable with dynamic networks. Over the

same skewed workloads recently used to make the case for dynamic

networks and heretofore considered challenging for static networks,

static networks achieve performance gains over fat-trees similar to

those claimed by dynamic networks at the same price point.

(4) Concrete, deployable alternatives to today’s data centers:
Our results suggest that the least-resistance path beyond fat-

trees may lie in transitioning to superior, cabling-friendly, static

networks, such as Xpander [33], and that dynamic networks have

not yet demonstrated an advantage over such static networks. We

discuss the implications for future research on data center network

design, especially for dynamic topologies, in §7.

To aid reproducibility of our results, help researchers and

practitioners run further experiments, and provide an easy-to-

use baseline for future research on dynamic networks to compare

against, our simulation framework is available online [1].

2 Network flexibility
This section examines the instructive example of the inflexibility of

oversubscribed fat-trees towards skewed traffic matrices (§2.1) and

introduces a quantitative notion of the desired flexibility (§2.2).

Fat-tree’s inflexibility

Bottleneck

ServersPod

Figure 1: A k = 4 fat-tree. With more than 75% of the network’s capacity
intact, if all 4 servers in one pod sent traffic to servers in another pod (thus
involving 50% of all servers), each would get only 75% of the bandwidth.

2.1 Fat-trees are inflexible
Oversubscribed fat-trees are fundamentally limited in their ability

to support skewed traffic matrices. In the example shown in Fig. 1,

the fat-tree is oversubscribed by removing one root switch. If each

server in one pod is communicating with a (different) server in

another pod, not all such connections can get full bandwidth. In

this example, the network still has more than 75% of its original

capacity, and yet cannot provide full bandwidth connectivity for a

traffic matrix involving only 50% of the servers. This observation

can be formalized quite simply, as follows:

Observation 1. If a fat-tree built with k-port switches is over-
subscribed to x fraction of its full capacity, then there exists a traffic
matrix involving 2/k-fraction of the servers such that no more than
x fraction of throughput per server is achievable.

Proof. The proof is constructive, i.e., we provide the specific
traffic matrix which is bottlenecked to no more than x per-server

throughput. If the oversubscription is at the top-of-rack (ToR)

switch, with each ToR supporting s servers with only sx network

ports, then trivially, any traffic matrix (with 2s servers) where each
server under one ToR sends traffic to a unique server under another

ToR, is bottlenecked at the sender’s ToR to x throughput. Note that

nonuniform oversubscription only pushes throughput lower — in

that case, some ToR uses even fewer connections to the network

and achieves throughput lower than x .
Next, suppose that the aggregation layer (i.e., the middle layer

of switches) is oversubscribed to an x fraction, i.e., each switch in

this layer has a links connecting it to ToRs and ax links connecting

it to the core layer (the upper layer of switches). Then, any traffic

matrix where each server in a pod sends traffic to a unique server

not within the same pod, is bottlecked at the aggregation layer to x
fraction of throughput. The same argument applies when the core

layer is oversubscribed. In these cases, the number of servers in

the difficult traffic matrices is two times the number of servers in a

pod, i.e., 2/k of the servers in the network. □

For a fat-tree built using 64-port switches, a 2/k fraction of the

servers would be a mere 3%. If this fat-tree were built at, say 50%

oversubscription, a pair of pods comprising only 3% of the network’s

servers could still not achieve full throughput, even while the rest

of the network idles. Only if 50% or less of the servers in each of the

pods were involved, could such an oversubscribed fat-tree achieve

full throughput for these servers. Of course, if it were known a priori
which pods might need higher bandwidth, different pods may be

Beyond fat-trees without antennae, mirrors, and disco-balls SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA

oversubscribed differently, but this would be a strong assumption

on the predictability and stability of traffic, and pod-pod traffic

would need aggressive management in such scenarios. Other Clos-

network-based designs suffer from similar problems.

Thus, as literature on topology adaptation rightly points out,

oversubscribed fat-trees score low on any metric of network

flexibility. But what precisely is the metric? So far, there has not

been a clearly specified and easily replicable standard for evaluating

the flexibility of a topology towards accommodating skewed traffic

matrices
1
. In the following, we offer a simple starting point.

2.2 Throughput proportionality
We would like to build static networks that can move around their

limited capacity to meet traffic demands in a targeted fashion. A

network’s total capacity is fixed, and defined by the total link

capacity of its edges, and for each server, the network expends

this capacity on routing its flows. We may hope that as the number

of servers participating in the traffic matrix (TM) decreases, we see

a proportional increase in throughput. In the following, we describe

a benchmark for network flexibility capturing this intuition.

Modeling throughput per server: Consider an arbitrary static

network G with N servers. A traffic matrix M captures traffic

demands between the N servers, withmi j specifying the demand

from server i to server j. We restrict traffic matrices to the hose

model, i.e., the sum of demands from (to) each server is limited by

the outgoing (incoming) capacity of its network interfaces.

G is said to support a TMM with the satisfaction matrix TM if

each flow i → j inM achieves throughputTM (i, j)without violating
link-capacity constraints. Throughput for server i is then ti =∑
j TM (i, j). G is said to support M with throughput t if there is

a satisfaction matrix where each server simultaneously achieves

throughput at least t , i.e.,∃TM :∀i ∈ [N] ti ≥ t . Defining throughput
in this way, at a per-server granularity (rather than flow or server-

pair granularity) allows a simpler description of TMs with active

servers, without constraints on how each active server spreads

its traffic across destinations, and more directly captures the only

constraints in the hose model: the servers themselves. Accordingly,

throughout the following discussion, we shall refer to throughput

in terms of a fraction of the line-rate ∈ [0, 1].
A network shall be called throughput-proportional (TP), if when

built such that it achieves throughputα per server for theworst-case

TM, then it achieves throughput min{α/x , 1} per server for any
TM with only an x fraction of the servers involved. This definition

captures the intuition described above: as the number of servers

involved in communication decreases, a TP network can increase

per-server throughput proportionally
2
. Note that one can easily

map a fuzzier classification of servers as “hot” or not, to the strict

binary of “involved in the TM” or not.

1
FireFly [18] used an abstract model to evaluate the benefit of dynamic network

links compared to a fat-tree based on performance improvements over random traffic

matrices. Our objective is very different: quantify how well a given static network

accommodates arbitrarily skewed traffic matrices. Firefly’s “Metric of Goodness” also

falls short of this: as prior work shows [20], bisection bandwidth can be a logarithmic

factor away from throughput, and this factor varies for topologies.

2
We acknowledge the parallels with energy proportional networking [2, 19], but note

that EPN addresses a different question along the lines of which links to turn off, or

change the data rate on, etc. to reduce the network’s energy usage.

Ideal for topology flexibility

T
hr

ou
gh

pu
t

 p
er

 s
er

ve
r

Fraction of servers with traffic demand

10

!

1

!

(x, !/x)

Throughput proportional

Fat-tree

β

Figure 2: A throughput-proportional network would be able to distribute its
capacity evenly across only the set of servers with traffic demands.

This notion of a throughput-proportional network is illustrated

in Fig. 2, which also contrasts it with the fat-tree’s behavior. As

discussed in §2.1, for the fat-tree with a simple pod-to-pod TM, if a

fraction greater than β = 2/k of servers are involved, throughput

will be limited to α . As the fraction of servers involved drops below

β , throughput per server increases proportionally, hitting 1 only

when α fraction of the pod itself is involved.

As the fat-tree example illustrates, network bottlenecks may

prevent a network from achieving throughput proportionality.

But is such proportionality unattainable for other statically wired

networks as well? Below, we prove that for a generic statically

wired network, per-server-throughput cannot improve more than

proportionally, at least for certain classes of traffic matrices.

Permutation TMs. A permutation traffic matrix over k servers

involves each of these servers communicating with exactly one

other unique server. We prove the below result.

Theorem 2.1. Over the class of permutation TMs, throughput
in a static network cannot increase more than proportionally as the
fraction of servers involved in the TM decreases.

Theorem 2.1 follows from the following lemma.

Lemma 2.2. If, for some x ∈ (0, 1], G supports throughput t
for every permutation matrix over x fraction of the servers, then
it supports throughput xt for any permutation matrix over all servers.

Before diving into the proof of Lemma 2.2, we explain why it

indeed implies Theorem 2.1. Assume, for the point of contradiction,

that the statement of Theorem 2.1 is false and so throughput does

increase more than proportionally in α for some static network

G. Then, by the definition of throughput proportionality for some

fraction of servers x , the supported throughput for all permutation

TMs involving only an x-fraction of the servers is some β greater

than
α
x . By Lemma 2.2, G supports all permutation TMs with

throughput xβ > x α
x = α , contradicting the definition of α as

the worst-case throughput across all permutation TMs for G. Now,
let us prove Lemma 2.2.

Proof. (of Lemma 2.2) Consider a permutation TM M over

all n servers in G. Since in any permutation TM, each server

communicates with exactly one other unique server,M comprises

n
2
distinct communicating pairs of servers. Selecting

xn
2

of these

pairs and only considering the communication between these pairs,

SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA S. Kassing et al.

M
et

a-
no

de
 c

ab
le

 a
gg

re
ga

to
r

Po
d

To
R

Po
d

ca
bl

e
ag

gr
eg

at
or

M
eta-node cable aggregator

Pod

ToR

Pod cable aggregator

M
et
a-
no
de
 c
ab
le
 a
gg
re
ga
to
r

Po
dTo

R
Po
d
ca
bl
e
ag
gr
eg
at
or

M
eta-node cable aggregator

PodToR

Pod cable aggregator

Meta-node cable aggregator

Pod

ToR

Pod cable aggregator

Meta-node cable aggregator

Pod

ToR

Pod cable aggregator

Meta-node (aggregator)
Pod
Switches / racks

Pod-cabler (aggregator)

Figure 3: An Xpander network with 486 24-port switches, supporting 3402 servers broken into 6 pods, each with 3 meta-nodes. Left: all switches are shown at
the circles’ circumferences; other nodes are cable-aggregators. Right: Floor plan for the same 6 pods. Each pod has 3 rows of racks, each being a meta-node. Each
meta-node’s 27 switches and their connected servers fit in 7 racks (circles) of 48 rack units each, after accounting for cooling and power.

gives rise to a permutation TM on an x-fraction of the servers, and

is thus supported (by the statement of the lemma) at throughput

t . There are precisely K =
(n/2
xn/2

)
possible selections of such a set

of communicating pairs. If we scale the throughput of each of the

flows in such a TM to
1

K , the utilization of any link in G over this

scaled-down TM is now at most
1

K . The scaled-down throughput

of all TMs induced by choosing
xn
2

of the communicating pairs in

M can thus be supported simultaneously. Observe, however, that
every communicating pair inM appears in precisely

(n/2−1
xn/2−1

)
such

selections, and so its total achieved throughput should be scaled up

by this factor. As the number of servers in the network, n, increases,
the resulting throughput converges to xt . □

Following the strategy for the above proof for the family of

permutation TMs, we have also been able to prove analogous results

for several other TM families of interest, including all-to-all, many-

to-one, and one-to-many TMs. However, we can only conjecture on

a more general result over the larger class of hose TMs as follows:

Conjecture 2.3. Throughput in a static network cannot increase
more than proportionally as the fraction of active servers decreases.

One strategy for proving this stronger result would be to

prove, as conjectured below, that permutations are worst case

TMs. Such a result, combined with Lemma 2.2, would then prove

Conjecture 2.3. Proving that permutation traffic matrices are a

corner case would also be of independent interest — as prior work

Beyond fat-trees without antennae, mirrors, and disco-balls SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA

notes, the complexity of finding worst-case TMs for arbitrary

networks is unknown [20] and such a result could be significant

step in that direction.

Conjecture 2.4. Given a static networkG with N servers and an
arbitrary TMM for which G achieves throughput t per server, there
exists a permutation TM P for which G achieves throughput ≤ t .

The impossibility of exceeding throughput proportionality in static

networks (at least for certain families of TMs) makes it an idealized

benchmark for network flexibility towards skewed traffic: as traffic

consists of a smaller and smaller fraction of servers becoming

hotspots, how well does throughput scale compared to TP? §5

addresses this question experimentally.

3 State-of-the-art static network topologies
The Helios authors’ assessment of the inflexibility of statically-

wired networks (noted in §1) was likely accurate at the time, but in

the intervening years, a large number of new static topologies

have been proposed for data centers, including Jellyfish [31],

Longhop [32], Slimfly [9], and Xpander [33]. All of these have

a common feature: unlike the Fat-tree [3], they do not break the

network into layers, instead retaining a flat structure, where top-of-

rack switches are directly wired to each other. However, there are

sizable differences in performance even across flat topologies [20].

In particular, Jellyfish and Xpander achieve near-identical, high

performance (modulo a small variance for Jellyfish due to its

randomness), due to their being good expander graphs [33]. We

shall refer to these topologies as expander-based networks as we

expect results to be similar for other network designs based on

near-optimal expander graphs, such as LPS [25, 33].

For readers concerned by Jellyfish’s randomness, we note that

Xpander is deterministic, and provides symmetry and an intuitive

notion of inter-connected clusters of racks (“meta-nodes” and pods),

enabling clean aggregation of cables into a small number of bundles.

As noted in [29], such bundling can “reduce fiber cost (capex + opex)

by nearly 40%”. We illustrate these desirable properties in Fig. 3

for an Xpander configured to cost 33% less than a full-bandwidth

fat-tree with k=24. For a more detailed exposition including cable

counts and lengths, we refer readers to the Xpander paper [33].

The throughput of expander-based topologies on largely uniform

workloads or/and fluid-flow models has been evaluated before, but

it remains unclear whether (a) these claims extend to the skewed

workloads that dynamic networks target; and (b) the claimed

throughput advantage can be translated into low flow completion

times. Sections §5 and §6 address these questions.

4 Dynamic network topologies
Instead of delving into the details of any one of the myriad dynamic

network designs [10, 12–14, 17, 18, 24, 27, 35, 40], we endeavor to

tackle an abstract model that covers, with reasonable fidelity, the

existing proposals, as well as similar future extensions.

In a generic dynamic network, each ToR switch may have a

certain number of flexible ports, say k , which can be connected

to available flexible ports on other ToRs. The various proposed

realizations of this approach differ in the connectivity options they

Static FireFly ProjecToR

SR transceiver $80 $80 -

Optical cable ($0.3 / m) $45 - -

ToR port $90 $90 $90

ProjecToR Tx+Rx - - $80 to $180

DMD - - $100

Mirror assembly, lens - - $50

Galvo mirror - $200 -

Total $215 $370 $320 to 420

Table 1: Cost per network port for static and recent dynamic networks.
Component costs are from ProjecToR [13]. Each cable in a static network
is accounted for with 300 meter length, with its cost shared over its two ports.

make available, the reconfiguration time needed to change the

connectivity of flexible ports, the per-port cost, and the algorithms

used to configure the interconnect in real-time. For greatest

flexibility, we disregard constraints that limit connectivity, and

allow any ToR to connect to any other ToR. Further, our focus is

on the potential performance of dynamic topologies, and thus we

ignore algorithmic inefficiencies to the largest extent possible. We

nevertheless mention two factors that can have a large impact on

the performance of dynamic networks:

Direct-connection heuristics: The numerous dynamic designs

referenced above, all prioritize direct connections between ToR-

pairs with traffic demand. While FireFly [18] in general uses multi-

hop relaying, direct connections between pairs of communicating

racks are prioritized by its heuristics. Aswe shall see, such heuristics

can impair the potential of dynamic topologies.

Buffering: The limited number of flexible ports, together with the

reconfiguration time needed tomove their connectivity, implies that

dynamic topology proposals need to buffer packets until a suitable

connection is available, thus adding latency. If such buffering is not

feasible, e.g., due to most flows being short and latency-sensitive, it

becomes necessary to carry traffic over multiple hops.

We do not believe that any past proposal addresses these issues

in entirety, but perhaps these problems can be fully addressed by

future proposals, so we model two alternatives: (a) an “unrestricted”

optimal design unaffected by both factors; and (b) a “restricted”

design that suffers from both, i.e., picks the ToR-level topology

prioritizing direct connections between communicating ToRs, and

requires multi-hop connectivity in cases where the TM is such

that not all communicating pairs can be concurrently connected by

direct connections.

A more realistic abstraction of dynamic networks would lie

somewhere between these two extremes, but would need greater

machinery to capture the waiting time involved in dynamic

connectivity. The utility of the restricted model is in developing

intuition about the role of buffering and the time spent waiting for

dynamic connectivity in dynamic networks.

Lastly, it is worth noting that the flexibility of dynamic topologies

comes at a substantially higher per-port cost for the flexible ports.

The cost advantage of dynamic designs over fat-trees stems from

using fewer ports. However, this is also true of expander-based

networks. For equal-cost comparisons, networks should thus be

configuredwith the same total expense onports.We shall denote

SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA S. Kassing et al.

Matchings aren’t a great thing!

… total 9 switches…

… total 18 switches…

… total 9 switches…

Inactive servers

 Fat-tree (k = 6)

… total 18 switches…

Figure 4: This topology provides full throughput to all active servers, where
any scheme in the restricted dynamic model could not.

as δ , the cost of a flexible port normalized to that of a static port,

with the cost of a static port including half of a 300 meter cable’s

cost. Based on component costs for ProjecToR and FireFly (Table 1),

the lowest estimates imply δ = 1.5. Therefore, for supporting the

same number of servers, a dynamic network can only buy at most

0.67× the network ports used by an equal-cost static network. Of

course, if there were no additional cost for flexibility, i.e., δ = 1,

unrestricted dynamic networks would have an advantage: trivially,

they can at least do anything a static network can.

4.1 Static v. un/restricted dynamic nets: a toy example
Consider a network with 54 switches, each with 12 ports, 6 of which

are attached to servers. The devices and links necessary for this

discussion are shown in Fig. 4. Now assume that the TM involves

servers on only the 9 racks at the bottom. Thus, servers on each

of the other 45 switches are inactive and irrelevant, and one can

think of these switches as just 6-port devices. These 45 switches

can then be connected in a standard fat-tree topology with k = 6,

while exposing 54 of their ports to traffic sources and sinks between

which they provide full bandwidth. These 54 ports can be connected

in any convenient manner to the 9 switches with active servers,

thus providing full bandwidth between all active servers.

Using the topology in Fig. 4, the unrestricted model can, of course,

achieve full throughput. Even if the limitation of direct-connection

heuristics was imposed, but unlimited buffering was allowed,

full throughput could still be achieved by moving the dynamic

connections between the 9 racks in a round-robin fashion – at any

moment, the network can deliver the same capacity as the servers

need. (The number of servers on active racks equals their outgoing

links, and each packet consumes one unit capacity in the network

via the direct connection.) However, in practice, buffering cannot be

unlimited, and at relatively small time intervals, the reconfiguration

overhead must be incurred. ProjecToR’s recommended duty cycle,

for instance, could achieve 90% of full throughput.

Notice that the topology in Fig. 4 does not connect any of the 9

switches with traffic demands directly, unlike a restricted dynamic

network. Additionally, the absence of buffering will require that all

flows be concurrently serviced, implying that for all-to-all traffic

between these switches, there is no advantage to moving links

around. This makes the restricted dynamic model no better than

the best possible static topology connecting the 9 racks using their

direct links. The performance of any such a topology is upper

bounded (computed as in [30]) at 80% of the full throughput.

Interestingly, the best known static networks of the same

cost achieve full throughput for near-worst-case traffic patterns

across the same number of communicating servers, without being

designed with any awareness of which servers will be active. We

verified this with experiments over Jellyfish in two configurations

supporting the same number of servers: (a) with 9 network ports

at each of the 54 switches, instead of a dynamic network’s 6 (i.e.,
δ = 1.5); and (b) with the same port count of 12 for all switches as

in the above discussion, but with 81 such switches (again, δ = 1.5).

Other expander-based data centers would achieve the same result.

This toy example illustrates the question at the heart of this

work: do a dynamic network’s fewer / more expensive, but flexible

connections compare favorably to a larger number of cheaper static

connections? We shall later explore this question in greater depth

quantitatively, but it is also useful to point out the several qualitative

factors that may put dynamic networks at a disadvantage.

4.2 Barriers to the deployment of dynamic networks
Dynamic topologies are an intuitive and exciting idea, but bear

little resemblance to present practice in data centers, thus posing

unique challenges for deployment:

• Unfamiliar problems in device packaging, spatial planning.

• Monitoring and debugging the highly ephemeral networks.

• The impact of environmental factors like dust, vibration, and

temperature on device alignment and functioning.

• Lack of clarity on the reliability and lifetime of the used devices

in environments they are not intended for.

• Lack of operator experience with the devices involved.

Certainly, not all the above criticisms apply across all proposals

in this direction, but some are fundamental, e.g., monitoring and

debugging networks that are themselves changing. Deploying a

different static topology like Xpander may also require changes, e.g.,
to any automation and operator training specific to Clos networks,

but these barriers are substantially lower, as evidenced by the

recent deployment of the DragonFly [23] topology in the high-

performance computing space.

5 Static , Inflexible
This section presents a head-to-head comparison of static and

dynamic networks, focused on the topology models themselves,

neglecting any inefficiencies from routing and congestion control,

and additionally, in the case of dynamic networks, the dynamic

topology optimization. §6 will address, for static networks, the

problem of translating results from this idealized setting to low

flow-completion times under dynamic, skewed network traffic.

We verified that Xpander and Jellyfish achieve identical per-

formance. Experiments in this section use Jellyfish as its ease of

construction with arbitrary switch and port counts allows us to

include two other recent static networks for comparison. Results in

§6 use Xpander to side-step concerns about Jellyfish’s randomness.

Both dynamic and static networks are evaluated here under

skewed but difficult (ideally, worst-case) TMs — in line with the

Beyond fat-trees without antennae, mirrors, and disco-balls SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Throughput proportional
Jellyfish

Unrestricted dyn (δ=1.5)

SlimFly

Restricted dyn (δ=1.5)

Equal-cost fat-treeTh
ro

ug
hp

ut
 p

er
 s

er
ve

r

Fraction of servers with traffic demand

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Throughput proportional
Jellyfish

Unrestricted dyn (δ=1.5)
Longhop

Restricted dyn (δ=1.5)
Equal-cost fat-tree

Th
ro

ug
hp

ut
 p

er
 s

er
ve

r

Fraction of servers with traffic demand

(b)

Figure 5: Throughput proportionality and dynamic networks compared with (a) SlimFly and a same-equipment Jellyfish; and (b) Longhop and a same-equipment
Jellyfish. According to measurements used to make the case for dynamic topologies, the shaded region is the regime of interest. For both cases, the unrestricted
model would achieve full throughput for δ = 1, i.e., if there were no additional cost for flexibility.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Th
ro

ug
hp

ut
 p

er
 s

er
ve

r

Fraction of servers with traffic demand

80% fat
50% fat
40% fat

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Th
ro

ug
hp

ut
 p

er
 s

er
ve

r

Fraction of servers with traffic demand

k = 36
k = 24
k = 12

(b)

Figure 6: A direct comparison between a full bandwidth fat-tree and an oversubscribed Jellyfish network: (a) Jellyfish with fewer switches — 80%, 50%, and 40%
— as a k = 20 fat-tree, while supporting the same number of servers. With 50% fewer switches, it still provides nearly full bandwidth connectivity between any
40%-subset of servers. (b) This advantage is consistent or improves with larger k (12, 24, 36). Jellyfish supports 2× the fat-tree’s servers in each case.

definition of TP (§2.2), we want oversubscribed networks to provide

high throughput for any TM involving small subsets of servers.

We borrow heavily from recent work on comparing topolo-

gies [20], using the associated throughput evaluation tool [21]. We

use a series of skewed TMs, increasing the fraction of server racks

participating in the TM, with no flows between non-participating

racks. For static networks, we use longest matching TMs [20],

whereby each participating rack sends all its traffic to one other rack,

and the rack pairings maximize distance between communicating

racks using a heuristic: maximum-weight matching, with the

weights being the distances between racks. Intuitively, flows along

long paths consume resources on many edges, and the large rack-

to-rack flows reduce opportunities for load balancing traffic. These

TMs have been shown (empirically) to be harder than TMs such

as all-to-all [20]. Thus, while finding the worst-case TM is a

computationally non-trivial problem, we made our best efforts to

evaluate static networks under difficult TMs.

In the context of dynamic networks, longest matching TMs are

meaningless: by changing the topology, distances between racks

can be changed. The unrestricted model is simple to dispose of,

regardless of TM. As long as the bottlenecks are not at the servers,

independent of the number of ToRs networked, it can achieve per-

server throughputmin{1, rs }, if every ToR has r network ports and

s server ports — at any moment, a ToR can be delivering r units
of traffic directly to a destination, and at most producing s units.
The independence from the number of racks comes from ignoring

the reconfiguration time and buffering, which would be important

concerns in any evaluation of latency or flow completion time.

For the restricted model, instead of evaluating specific mecha-

nisms for computing topologies, we compute an upper-bound on

the performance of any topology which could be built using the

fixed network degree r at each ToR, as explained in §4.1.

Results: All the non-fat-tree networks achieve much higher

performance than a same-cost oversubscribed fat-tree, particularly

SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA S. Kassing et al.

as fewer servers participate in the TM (leftward along the x-axis).
Fig. 5(a) shows results for SlimFly (578 ToRs, 25 network- and

24 server-ports per ToR) [9], Jellyfish built with exactly the same

equipment, and the throughput proportionality (TP) curve using

the throughput achieved for Jellyfish at x=1.0 as the base
3
(i.e.,

α in Fig. 2). For a hypothetical TP-network built at the same

oversubscription as Jellyfish, in this case, when fewer than 35%

of servers are involved, each would obtain full throughput. The

restricted dynamic topology model (with two-thirds the network

ports used by the static networks, i.e., δ = 1.5) performs poorly. The

unrestricted dynamic model (δ = 1.5) achieves lower throughput

than Jellyfish when a smaller fraction of servers is involved. It is

noteworthy, that this is the operating regime for many deployments

— recent measurements across 4 large production clusters showed

46-99% of rack-pairs exchanging no traffic [13] in a representative

5-minute window. Fig. 5(b) shows broadly similar results in a

configuration based on the Longhop topology [32] (512 ToRs, 10

network- and 8 server-ports per ToR).

Clearly, reducing the number of network ports hurts the dynamic

topologies due to ToR-level bottlenecks. Thus, in an alternative

approach to equal-cost comparisons, instead of reducing the

network ports for the dynamic networks, we also evaluated Jellyfish

with δ× the network ports. As in the example in §4, we evaluated

two possibilities: (a) giving Jellyfish δ× switches of the same port-

count, and (b) giving Jellyfish the same number of switches, but

each with δ× network ports. In both settings, even with δ = 1.5,

Jellyfish achieved full throughput in the regime of interest.

Beyond comparisons with dynamic networks, we also attempt

to quantify how much more efficient expander-based networks can

be than fat-trees for such skewed traffic. Fig. 6(a) shows the results

for Jellyfish built using the same number of servers, and 80%, 50%,

and 40% of the switches available to a full fat-tree with k=20 (i.e.,
500 switches, with 20 ports each, and 2000 servers). With 50% of the

fat-tree’s switches (and 37.5% its network cables; the server-switch

cables are the same number, of course), Jellyfish can provide nearly

full bandwidth as long as <40% of servers participate in the TM.

Fig. 6(b) shows that Jellyfish’s advantage is consistent, or

improves with scale, as it is built using the same set of switches as

full fat-trees built with k=12, 24, and 36, but with twice the servers
in each case. Note that Jellyfish topologies are being impaired more

severely than may be evident: adding more servers at a switch with

the same port-count also reduces the number of network ports

available to connect to other switches.

Results in Fig. 5 and 6 cover oversubscription (1:
1

α) ranging from

1:4 through nearly 1:1. Throughout the regime of interest, for large

α , both unrestricted dynamic networks (with δ = 1.5) and Jellyfish

achieve full throughput, and for smaller values of α , both fall short,

but Jellyfish compares well with dynamic networks.

3
Our interest is in assessing how well the best-performing static networks compare

to TP, and thus we only show the TP curve for Jellyfish. Given that Jellyfish is not

far from TP, combining this experimental result with the analysis in §2.2 implies that

static networks cannot exceed Jellyfish’s scaling characteristic, and more generally,

that of expander-based networks, by a large margin.

To summarize, in a fluid-flow model ignoring inefficiencies in

routing, congestion control, and dynamic optimization, known

static topologies provide substantial efficiency gains over fat-trees.

Further, particularly under the skewed workloads used to make

the case for dynamic topologies, they fail to provide an advantage

over these static topologies.

6 Simple, effective routing on static networks
Routing on expander-based networks is nontrivial [31, 33], and

so far, solutions have depended on MPTCP [36] over k-shortest
paths [38]. While this approach has been shown to achieve

throughput approximating the linear program solution for certain

traffic matrices, the dependence on MPTCP poses deployment

challenges, and also requires a long convergence period, thus only

reaching optimality for long-running flows. In addition, the use of k-
shortest path routing requires significant architectural changes. Can

we achieve low flow completion times on such networks, especially

under changing, skewed traffic, with simple and easy-to-deploy

routing and congestion control schemes?

We begin by examining two well-understood routing schemes:

ECMP and VLB. We investigate the performance of these routing

schemes with DCTCP [5], which is already deployed in data centers.

Xpander [33] is used throughout this section as a representative

expander-based network. In the following, we show that both ECMP

and VLB provide poor performance in certain scenarios. We then

show that a hybrid of these two simple routing schemes suffices

for attaining high performance across diverse workloads.

6.1 ECMP does not always suffice
Expander-based static networks connect ToRs directly to each other.

Consider any pair of ToRs which are direct neighbors (Fig. 7(a)),

and a traffic matrix consisting of only traffic between these two

racks. For this traffic, ECMP enables the use of only the direct link

between these racks, even though the rest of the network is unused.

This inability to use multiple paths creates a bottleneck, degrading

throughput. The result of packet-level simulations for this scenario

is shown in Fig. 7(b), where just 10 servers on two adjacent racks

send each other traffic. (Details of the experiment are unimportant

for now, but curious readers can refer to §6.4.) As soon as the load

is enough to saturate the bottleneck, the average flow completion

time (FCT) becomes much higher in Xpander-ECMP.

Using Valiant Load Balancing [39] in Xpander on the other hand,

achieves much better results; using random via points to bounce

traffic through enables the use of path diversity that ECMP prohibits.

Perhaps VLB is the right answer, then?

6.2 VLB does not always suffice
Unfortunately, VLB has not one, but two shortcomings: first, as is

already clear from Fig. 7(b), the use of longer paths inflates network

RTTs, and thus FCT for short flows which are RTT bound, even

though high throughput can be achieved. Second, when there is

in fact high traffic demand throughout the network, VLB’s use of

random via points makes inefficient use of network bandwidth.

FCT results for such a scenario, with Xpander with an all-to-

all traffic matrix, are shown in Fig. 7(c). As the load increases,

VLB’s performance deteriorates, and ECMP achieves much better

Beyond fat-trees without antennae, mirrors, and disco-balls SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA

(a)

 0

 2

 4

 6

 8

 10

 12

0K 1K 2K 3K
A

ve
ra

ge
 F

C
T

(m
s)

Load λ (flow-starts per second)

Fat-tree
Xpander ECMP
Xpander VLB

(b)

 0

 5

 10

 15

 20

0K 50K 100K 150K 200K 250K 300K

A
ve

ra
ge

 F
C

T
(m

s)

Load λ (flow-starts per second)

Fat-tree
Xpander ECMP
Xpander VLB

(c)

Figure 7: Failure scenarios for ECMP and VLB: (a) ECMP fails to use path diversity between directly connected ToRs. (b) Average FCT, in a scenario where only 10

servers on two adjacent racks in Xpander are active. For the fat-tree, servers on two racks in the same pod are active. (c) Average FCT for all-to-all traffic.

results, matching the full-bandwidth fat-tree because the workload

is uniformly spread, and the optimal choice is indeed to use shortest

paths for all traffic.

6.3 A robust ECMP-VLB hybrid
These corner-cases already yield useful information: for workloads

like the one described by Facebook [28], ECMP on Xpander would

indeed perform well, matching the fat-tree’s performance at much

lower cost, as we shall see later. Further, for skewed workloads

like those considered by dynamic networks such as ProjecToR [13],

VLB suffices, modulo the increase in FCT for short flows, which

is determined more by RTT than bandwidth. These observations

provide the intuition for a simple hybrid scheme that achieves high

performance across a diversity of workloads.

We begin with the following hybrid: packets for a flow are

forwarded along ECMP paths until this flow encounters a certain

congestion threshold (e.g., a number of ECN marks), following

which, packets for this flow are forwarded using VLB. While we

found over our experiments that this scheme does in fact match

a full-bandwidth fat-tree’s performance across the workloads we

consider, it requires looking at congestion behavior to adaptively

decide on forwarding behavior.

We have found that a simpler design achieves the same results for

the workloads of interest: a flow is forwarded along ECMP paths

until this flow has sent a certain threshold number of bytes, Q ,
following which, the flow is forwarded using VLB. Further, instead

of switching routes at packet granularity, we do so for flowlets [22,

34], i.e., for each new flow’s flowlets, ECMP paths are chosen; for

flowlets after theQ-threshold, VLB is used. We refer to this scheme

as HYB. HYB is an oblivious routing scheme in the sense that it

does not decide on routing table configurations based on traffic.

It is minimally non-oblivious in the sense that it uses flow size

(packets sent so far) to decide whether to switch from ECMP to VLB.

However, this is easy to accomplish, e.g., at the hyperviser: once the
Q-threshold is reached, packets can be encapsulated to be delivered

to an intermediate switch (over ECMP routes to this intermediate),

which decapsulates and delivers packets to the destination (again,

over ECMP routes from the intermediate to the destination). Similar

encap-decap to achieve VLB has been used in designs which were

deployed, like Microsoft’s VL2 architecture [16].

How does one setQ? It is enough to setQ based on an operator’s

notion of “short flow” size, as this ensures short flows (which send

less than Q bytes) use shortest paths, but are also insulated from

long running flows, which are load balanced through the entire

fabric using VLB. In our experiments, we use Q=100 KB.
Our evaluation below shows that this scheme works well across

the workloads that we test, including the skewed workloads

used in recent data center design papers. Nevertheless, it is

useful to acknowledge the limitations of this routing scheme:

its performance deteriorates if large flows can saturate the network,

as VLB uses 2× the capacity per byte compared to ECMP, and

for such a high-utilization workload, this bandwidth would be

needed elsewhere. Performance also deteriorates if “short flows”

are voluminous enough to saturate ECMP bottlenecks. For the

scenario of two neighboring racks with only one ECMP path, e.g.,
at 100 Gbps with 100 KB flows, this would require a concurrent

flow rate exceeding 125,000 per second just between these two

racks (with all flows hitting this size). This is an order of magnitude

larger than reported measurements [8] at any switch, which we can

reasonably expect to be much larger than between a specific switch

pair. Also note that this is not fundamental, but a consequence of

the pragmatic choice of using the simplified Q-threshold in HYB,

instead of the congestion-aware method described above, which

would sidestep this issue.

There is significant potential for future work to design superior

routing (see §7), but our present objective is less ambitious:

demonstrating that for workloads published in the literature, even

this simple design suffices to match a full-bandwidth fat-tree’s

performance at much lower cost.

6.4 Experimental setup
We use a custom packet simulator [1] to evaluate expander-based

and fat-tree data center networks under a variety of workloads, and

measure flow completion time and throughput.

Topologies: A full-bandwidth fat-tree (k=16, 1024 servers, 320

switches, each with 16 10 Gbps ports) serves as the baseline. In

line with work on dynamic networks, which claim a 25-40% cost

advantage to match the fat-tree’s performance [13, 18], we use

Xpander built at 33% lower cost, i.e., a total of 216 switches, each
still with 16 ports

4
. This network supports a total of 1080 servers.

Routing and congestion control: We evaluate ECMP and HYB

on Xpander, and ECMP on the fat-tree. Both networks use flowlet

4
An alternative is to fix the number of switches to match the fat-tree’s 128 ToRs, but

give each 27 ports instead of 16. This would only favor Xpander.

SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA S. Kassing et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

103 104 105 106 107 108 109

Mean = 100KB
Mean = 2.4MB

Short Long

C
D

F

Flow size (bytes)

Pareto-HULL
pFabric Web search

Figure 8: The flow size distributions used in our experiments.

switching. The congestion control mechanism is DCTCP [5].

DCTCP’s ECN marking threshold is set to 20 full-sized packets.

The flowlet timeout gap is set to 50 µs.

Workload: The workload is defined by three factors: a probability

distribution capturing flow sizes; another capturing the sources

and destinations of flows; and a third for flow arrivals. Throughout,

flow arrivals are Poisson distributed, and we present results across

a range of arrival rates aggregated across the entire network. The

two flow size distributions we use are from past work [6, 7], and are

shown in Fig. 8. We experimented with a variety of distributions

for communication pairs:

• ProjecToR’s rack-to-rack communication probabilities from

a Microsoft data center [13] are used as is, with a particular

server within a rack chosen uniformly at random from the

rack’s servers. This is a highly skewed workload, with 77% of

bytes being transferred between 4% of the rack-pairs.

• A2A(x): A distribution capturing all-to-all traffic restricted to

x fraction of racks, with the rest being inactive. For the fat-

tree, the first x fraction are used, and for Xpander, a random x
fraction. The probability of a flow to start between any pair of

servers at active racks is uniform. Facebook’s workload, where

“demand is wide-spread, uniform” [28], but not all-to-all, could

be approximated with A2A between some fraction of servers.

• Permute(x): A distribution capturing random permutation

traffic between x fraction of the racks, with others inactive.

The probability of a flow to start between any matched pair of

racks is uniform, and zero for pairs that are not matched. This is

a challenging workload, because the rack-to-rack consolidation

of flows limits opportunities for load balancing.

Experiment framework: We set a total number of flows, F , and
a flow arrival rate, λ. At each (Poisson) flow arrival, a source and

destination for the flow are picked from a chosen communication

pair distribution, and flow size is picked from a chosen flow size

distribution. The number of active servers is always the same in any

comparisons, and an identical set of flows is run between the active

servers by fixing the seed for the random number generator. The

statistics are calculated over the flows started in the [0.5s, 1.5s)
time interval, and the experiment runs until all flows in this

interval finish. The number of flows, F , is chosen such that the

simulated time is at least 2 seconds. We calculate average FCT for

all flows, 99
th
percentile FCT for short flows (<100 KB), and average

throughput for the rest of the flows. For experiments where λ is

varied, we increase λ until the full-bandwidth fat-tree is persistently
overloaded, i.e., more flows arrive per unit time than finish.

6.5 Results: HYB performs well across workloads
Results for the pFabric flow size distribution over the A2A and

Permute trafficmatrices are shown in Fig. 9, 10, and 11. Across these

scenarios, Xpander with HYB matches the full-bandwidth fat-tree’s

performance for the skewed workloads, i.e., when the fraction of

active racks is not large. For the 99
th

%-ile FCT for short flows,

the performance of Xpander matches the fat-tree across nearly the

entire range of traffic matrices (Fig.9(b) and 10(b)). As expected,

when the fraction of racks involved is large, throughput and overall

average FCT with HYB deteriorate. We remind readers that for data

centers with skewed traffic, a small fraction of servers are hot.

Fig. 11 also shows the results for the permutation workload (over

31% of racks) with increasing flow arrival rates. Xpander with HYB

matches the fat-tree’s performance closely. The analogous set of

results for A2A are similar and are omitted.

Included in Fig. 11 is also a “77%-fat-tree”, which is an over-

subscribed fat-tree built at 23% lower cost than the full fat-tree,

and performance for which begins to deteriorate much earlier.

Configuring an over-subscribed fat-tree of 33% lower cost for amore

precise comparison was, unfortunately, difficult due to constraints

like needing the same number of servers per leaf switch.

Also worth noting is that while ECMP over Xpander performs

extremely poorly for Permute (Fig. 10(b)) as expected, it achieves

high performance for A2A (Fig. 9(b)). Thus, for uniform-like

workloads, even ECMP over Xpander would be sufficient.

Next, we evaluate Xpander using a different flow size distribution:

the Pareto flow-size distribution from HULL [6]. Most flows in

this distribution are small, with the 90
th

percentile being smaller

than 100 KB. Thus, a much larger flow arrival rate is used in our

experiments to generate load comparable to our experiments for the

pFabric distribution above. For this flow size distribution, all results

for Xpander are better than those with the pFabric distribution, so

we only include one: the 99
th

percentile FCT for short flows for the

A2A(0.31) in Fig. 12. With small flow sizes, network RTT bounds

flow completion time more than bandwidth, and Xpander’s shorter

paths result in lower FCT than the full-bandwidth fat-tree.

6.6 Results: Matching the gains of dynamic networks
ProjecToR’s authors compared their design to a full-bandwidth

fat-tree [13], configuring ProjecToR with 128 ToRs (same as the

fat-tree), each with 16 dynamic network connections (as opposed

to 8 network ports per ToR in the fat-tree), and 8 servers (and

no other intermediate switches, as opposed to 192 more in the

fat-tree). We compare Xpander to the fat-tree in precisely the

same configuration with a total of 128 switches, but using 16 static
network ports per switch, instead of dynamic. Neither topology in

this configuration has any other intermediate switches, only the

same ToRs with the same port counts. Note that this Xpander is

lower cost than ProjecToR, using the same number of static network
ports as ProjecToR uses dynamic ones, without any adjustment for

the cost factor, δ . We present results in two settings: one in which

server-switch links have the same 10 Gbps capacity as all other

links, and another with unconstrained capacity for server-switch

Beyond fat-trees without antennae, mirrors, and disco-balls SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 F
C

T
(m

s)

Fraction of active servers

Fat-tree
Xpander ECMP
Xpander HYB

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

<1
00

K
B

 9
9th

 %
-il

e
FC

T
(m

s)

Fraction of active servers

Fat-tree
Xpander ECMP
Xpander HYB

(b)

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

>=
10

0K
B

 A
vg

. t
hr

ou
gh

pu
t (

G
bp

s)

Fraction of active servers

Fat-tree
Xpander ECMP
Xpander HYB

(c)

Figure 9: A2A(x) with x increasing on the x axis, with pFabric’s flow size distribution and 167 flow arrivals per second per server: (a) average FCT, (b) 99th %-tile
FCT for short flows, and (c) average throughput for long flows.

 0

 2

 4

 6

 8

 10

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 F
C

T
(m

s)

Fraction of active servers

Fat-tree
Xpander ECMP
Xpander HYB

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

<1
00

K
B

 9
9th

 %
-il

e
FC

T
(m

s)

Fraction of active servers

Fat-tree
Xpander ECMP
Xpander HYB

(b)

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

>=
10

0K
B

 A
vg

. t
hr

ou
gh

pu
t (

G
bp

s)

Fraction of active servers

Fat-tree
Xpander ECMP
Xpander HYB

(c)

Figure 10: Permute(x) with x increasing on the x -axis, with pFabric’s flow size distribution and 167 flow arrivals per second per server: (a) average FCT, (b) 99th

%-tile FCT for short flows, and (c) average throughput for long flows.

 0

 20

 40

 60

 80

 100

 120

 140

 160

0K 20K 40K 60K 80K 100K 120K

A
ve

ra
ge

 F
C

T
(m

s)

Load λ (flow-starts per second)

Fat-tree
Xpander ECMP
Xpander HYB
77%-Fat-tree

(a)

 0

 1

 2

 3

 4

 5

 6

 7

0K 20K 40K 60K 80K 100K 120K

<1
00

K
B

 9
9th

 %
-il

e
FC

T
(m

s)

Load λ (flow-starts per second)

Fat-tree
Xpander ECMP
Xpander HYB
77%-Fat-tree

(b)

 0

 1

 2

 3

 4

 5

 6

 7

 8

0K 20K 40K 60K 80K 100K 120K

>=
10

0K
B

 A
vg

. t
hr

ou
gh

pu
t (

G
bp

s)

Load λ (flow-starts per second)

Fat-tree
Xpander ECMP
Xpander HYB
77%-Fat-tree

(c)

Figure 11: Permute(0.31) with pFabric’s flow size distribution and increasing aggregate flow arrival rate on the x -axis: (a) average FCT, (b) 99th %-tile FCT for
short flows, and (c) average throughput for long flows. (320 servers out of 1024 form a 0.31 fraction, and this translates to an Integer number of racks.)

 0

 50

 100

 150

 200

 250

 300

 350

0.5M 1.0M 1.5M 2.0M 2.5M 3.0M

<1
00

K
B

 9
9th

 %
-il

e
FC

T
(µ

s)

Load λ (flow-starts per second)

Fat-tree
Xpander ECMP
Xpander HYB

Figure 12: A2A(0.31) with the Pareto-HULL flow size distribution: 99th

percentile FCT for short flows.

links. The latter model is used only with reference to ProjecToR

(i.e., in this sub-section and in §6.7), as this is how ProjecToR was

evaluated, to effectively model an oversubscribed fat-tree with

additional servers underneath each rack. All other experiments in

the paper are conducted with server-switch links obeying the same

capacity constraints as switch-switch links.

Fig. 13(a) and Fig. 13(b) show the average FCT (over all flows)

and 99
th

percentile FCT for short flows in the same setting as

ProjecToR (i.e., ignoring server-level bottlenecks). As flow arrival

rate increases, Xpander achieves up to 90% lower average as well as

99
th

percentile FCT, when using HYB. These gains over the fat-tree

are similar to those described for ProjecToR [13]. Thus, compared to

an oversubscribed fat-tree, both ProjecToR and Xpander can achieve

significant performance improvement. In this comparison, Xpander

is built at 30% lower cost than ProjecToR (assuming δ = 1.5, based

on the low-end cost estimates from ProjecToR).

When the server-switch link capacity constraint is modeled,

Xpander matches the fat-tree’s performance, as shown in Fig. 13(c).

SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA S. Kassing et al.

 0

 20

 40

 60

 80

 100

 120

 140

 160

2K 4K 6K 8K 10K 12K 14K

A
ve

ra
ge

 F
C

T
(m

s)

Load λ (flow-starts per second)

Fat-tree
Xpander ECMP
Xpander HYB

(a)

 0

 5

 10

 15

 20

 25

2K 4K 6K 8K 10K 12K 14K

<1
00

K
B

 9
9th

 %
-il

e
FC

T
(m

s)

Load λ (flow-starts per second)

Fat-tree
Xpander ECMP
Xpander HYB

(b)

 0

 20

 40

 60

 80

 100

 120

 140

 160

2K 4K 6K 8K 10K 12K 14K

A
ve

ra
ge

 F
C

T
(m

s)

Load λ (flow-starts per second)

Fat-tree
Xpander ECMP
Xpander HYB

(c)

Figure 13: A ProjecToR-like comparison: (a) average and (b) 99th percentile FCT for short flows for Xpander and fat-tree networks, when server-level bottlenecks
are ignored; and (c) average FCT when server-level bottlenecks are also modeled.

 0

 5

 10

 15

 20

 25

 30

 35

 40

0K 5K 10K 15K 20K 25K

A
ve

ra
ge

 F
C

T
(m

s)

Load λ (flow-starts per second)

Fat-tree
Xpander ECMP
Xpander HYB

(a)

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

0K 5K 10K 15K 20K 25K

<1
00

K
B

 9
9th

 %
-il

e
FC

T
(m

s)

Load λ (flow-starts per second)

Fat-tree
Xpander ECMP
Xpander HYB

(b)

 0

 10

 20

 30

 40

 50

 60

0K 5K 10K 15K 20K 25K

A
ve

ra
ge

 F
C

T
(m

s)

Load λ (flow-starts per second)

Fat-tree
Xpander ECMP
Xpander HYB

(c)

Figure 14: Skew(0.04,0.77) with pFabric’s flow size distribution: (a) average and (b) 99th percentile FCT for short flows for Xpander and fat-tree networks, when
server-level bottlenecks are ignored; and (c) average FCT when server-level bottlenecks are also modeled.

 0

 10

 20

 30

 40

 50

 60

0K 10K 20K 30K 40K 50K 60K 70K 80K

A
ve

ra
ge

 F
C

T
(m

s)

Load λ (flow-starts per second)

Fat-tree
Xpander ECMP
Xpander HYB

(a)

 1

 2

 3

 4

 5

 6

0K 10K 20K 30K 40K 50K 60K 70K 80K

<1
00

K
B

 9
9th

 %
-il

e
FC

T
(m

s)

Load λ (flow-starts per second)

Fat-tree
Xpander ECMP
Xpander HYB

(b)

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

0K 10K 20K 30K 40K 50K 60K 70K 80K

>=
10

0K
B

 A
vg

. t
hr

ou
gh

pu
t (

G
bp

s)

Load λ (flow-starts per second)

Fat-tree
Xpander ECMP
Xpander HYB

(c)

Figure 15: A k = 24 fat-tree compared to an Xpander built at only 45% of its cost under the same traffic model as Fig. 14. The range of aggregate flow arrivals per
second explored in this experiment is scaled by the same factor as the total number of servers increases compared to the smaller fat-tree in Fig. 14.

In this setting, the full-bandwidth fat-tree is indeed able to provide

full bandwidth, and leaves little room for improvement. ProjecToR’s

analysis method is thus modeling scenarios where the fat-tree is

oversubscribed by adding more servers at the ToR, thus hitting

ToR-outlink bottlenecks earlier.

6.7 Results: more on skewed traffic
In the following, we suggest a model for skewed traffic, which

allows experimentation with different degrees of skew and at

different scales: Skew(θ , ϕ), where θ is the fraction of “hot” racks,

and ϕ the fraction of traffic concentrated among these racks. The

hot racks, Rhot , comprise θ fraction of racks (randomly chosen),

the rest being cold racks, Rcold . Each rack in Rhot has probability

of participating in a communication proportional to
ϕ

|Rhot | , and

each in Rcold proportional to
(1−ϕ)
|Rcold | . For any rack-pair, the

product of these probabilities followed by normalization yields

the probability of communication between them. Skew(0.04,0.77)

models a simplification of the ProjecToR trafficmatrix. Fig. 14 shows

results analogous to the ProjecToR comparison in Fig. 13, but using

this simplified ToR-communication probability distribution; these

are largely similar to those in Fig. 13.

We also test Skew(0.04,0.77) at larger scale, with a k=24 fat-

tree, and an Xpander built at only 45% of its cost, using 322

switches of 24 ports each, instead of the fat-tree’s 720 switches.

The results are shown in Fig. 15. (These experiments do incorporate

the server-switch link capacity constraints.) ECMP over Xpander

performs better for this larger topology, although its performance

still deteriorates at high flow rates, when short flows can saturate

the shortest-path bottlenecks. Xpander with HYB matches the fat-

tree’s performance. In line with scaling results from the fluid-flow

model (§5), Xpander’s cost-efficiency improves with scale.

Beyond fat-trees without antennae, mirrors, and disco-balls SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA

Thus, across the workloads tested, when the fraction of hot servers

is not large, an expander-based network built at 33% lower cost

can match a full-bandwidth fat-tree’s performance using simple

routing. For uniform-like traffic, ECMP on such networks is enough

to match a full-bandwidth fat-tree’s performance at lower cost.

7 Lessons and future directions
Our results show that not only is topology dynamism not essential

to matching the performance of full-bandwidth fat-trees at lower

cost, this can be achieved even without dynamic optimization of

routing. This surprising result nevertheless leaves many intriguing

questions wide open for both static and dynamic networks:

7.1 Static networks

While our results already show substantial gains over fat-trees,

we have only scratched the surface of routing possibilities on

expander-based networks. Results in the fluid-flow model reveal

potential benefits much larger than what our simple-by-design

routing scheme achieves — throughput gains of more than 3×
over equal-cost oversubscribed fat-trees (Fig. 5), and matching the

performance of full-bandwidth fat-trees at 50% lower cost (Fig. 6).

Several important questions thus remain unanswered:

• What is the best oblivious routing scheme for expander-

based networks?

• Does exploiting only the knowledge that the TM is skewed

(e.g., only α fraction of servers are “hot”) help an otherwise

oblivious scheme?

• Howmuch can performance be further improved by adaptive

routing? For fat-trees, schemes like CONGA [4] provide

significant improvements. Do the same methods work well

for expander-based networks?

A better understanding of the throughput proportionality metric

would also be valuable, including resolving the conjectures in §2.

7.2 Dynamic networks
Prior research on dynamic data center networks indeed achieves

significant improvements over fat-trees, but as argued above, these

improvements do not reflect an inherent advantage of incorporating

dynamic connectivity in the topology.

We argue that demonstrating such an advantage requires:

• . . . comparing to expander-based static networks

• . . . at equal cost
• . . . using more expressive routing than ECMP, and

• . . . accounting for added latency from topology dynamics.

As we have shown in §2.1, fat-trees are nearly ideally inflexible
towards skewed traffic, and thus an easy baseline, especially

compared to expander-based networks such as Xpander [33] and

Jellyfish [31]. Further, even expander-based networks require

the use of more expressive routing than just ECMP to provide

their efficiency improvements (§6). Using ECMP handicaps static

networks in comparisonswith dynamic designswhere sophisticated

routing and topology optimizations are used. Also, comparing

networks without equalizing cost simply does not yield any

actionable information
5
. Specifically, if a dynamic network design

under consideration uses x ports that cost δ times the cost of a

“static port” (δ varies across technologies), the point of comparison

should be an expander-based design with δx ports.

In many dynamic designs, end-hosts often need to wait until

connectivity between them is available, leading to additional latency

and buffering. Accounting for these delays and their interplay with

congestion control is essential for meaningful comparisons.

Our simulation framework is available [1] as an easy-to-use

baseline for future work on dynamic networks to compare against.

8 Recent developments in dynamic networks
The past decade has produced a large number of novel and

interesting proposals for data center network topologies, both static

(§3) and dynamic (§4). At least three new proposals have been made

concurrently with this work [11, 26, 37], which we discuss below.

Flat-tree [37] proposes the use of small additional switches in the

topology which function as “converters”, making some connections

more “local” when needed, in an effort to match Jellyfish’s perfor-

mance while preserving structure. However, Xpander can achieve

these objectives without additional converter switches.

MegaSwitch [11] proposes the use of wavelength division mul-

tiplexing over a set of racks arranged in an optical ring, which

limits its present design to 33 racks. MegaSwitch does not include

a crisp cost comparison as the optical components needed (e.g.,
transceivers) are not standard, commodity equipment.

RotorNet [26] is a novel dynamic topology proposal that differs

from the prevalent approach to the design of dynamic data

centers by not relying on any dynamic optimization in response

to traffic estimation. Rather, RotorNet cycles through a series

of pre-determined optical port matchings in a traffic agnostic

manner. Investigating rigorously, following §7, whether RotorNet

outperforms state-of-the-art static networks is deferred to future

research. While RotorNet alleviates some of the problems past

approaches faced, it still involves nontrivial challenges, such as

accommodating latency-sensitive traffic.

Thus, even the most recent dynamic designs have not yet

demonstrated an advantage over expander-based static networks.

9 Conclusion
Our results show that state-of-the-art static networks designed

using commodity data center network equipment and employing

simple routing protocols provide the same cost-efficiency advan-

tages over full-bandwidth fat-trees as claimed by recent proposals

on dynamic networks. We believe that investigating and advancing

the deployability of these static network designs in practice is a

promising approach for moving beyond today’s prevalent data

center architectures. We argue that for dynamic networks to be

compelling, they should demonstrate substantial improvements

over these static networks when compared at equal cost.

Acknowledgments
We would like to thank Ratul Mahajan for his insights on the

limitations of the restricted topology adaptation model. We are

5
Equivalently, one could match performance and quantify the cost difference.

SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA S. Kassing et al.

also grateful to our colleagues who provided helpful feedback

on this work, including Monia Ghobadi, Torsten Hoefler, George

Porter, Marcel Schneider, Laurent Vanbever, and the anonymous

SIGCOMM reviewers and shepherd. Asaf Valadarsky is supported

by a Microsoft Research Ph.D. Scholarship. Michael Schapira is

supported by the PetaCloud Consortium.

References
[1] Netbench. (2017). https://github.com/ndal-eth/netbench.

[2] Dennis Abts, Michael R Marty, Philip M Wells, Peter Klausler, and Hong Liu.

Energy Proportional Datacenter Networks. ACM/IEEE ISCA (2010).

[3] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A Scalable,

Commodity Data Center Network Architecture. ACM SIGCOMM (2008).

[4] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan

Vaidyanathan, Kevin Chu, Andy Fingerhut, Francis Matus, Rong Pan,

Navindra Yadav, and George Varghese. CONGA: Distributed Congestion-aware

Load Balancing for Datacenters. ACM SIGCOMM (2014).

[5] MohammadAlizadeh, Albert Greenberg, David AMaltz, Jitendra Padhye, Parveen

Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. Data Center

TCP (DCTCP). ACM SIGCOMM (2010).

[6] Mohammad Alizadeh, Abdul Kabbani, Tom Edsall, Balaji Prabhakar, Amin Vahdat,

and Masato Yasuda. Less is More: Trading a Little Bandwidth for Ultra-low

Latency in the Data Center. USENIX NSDI (2012).
[7] Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick McKeown,

Balaji Prabhakar, and Scott Shenker. pFabric: Minimal Near-optimal Datacenter

Transport. ACM SIGCOMM (2013).

[8] Theophilus Benson, Aditya Akella, and David A Maltz. Network Traffic

Characteristics of Data Centers in the Wild. ACM SIGCOMM (2010).

[9] M. Besta and T. Hoefler. Slim Fly: A Cost Effective Low-Diameter Network

Topology. IEEE/ACM SC (2014).

[10] Kai Chen, Ankit Singla, Atul Singh, Kishore Ramachandran, Lei Xu, Yueping

Zhang, Xitao Wen, and Yan Chen. OSA: An Optical Switching Architecture for

Data Center Networks with Unprecedented Flexibility. USENIX NSDI (2012).
[11] Li Chen, Kai Chen, Zhonghua Zhu, Minlan Yu, George Porter, Chunming Qiao,

and Shan Zhong. Enabling Wide-Spread Communications on Optical Fabric with

MegaSwitch. USENIX NSDI (2017).
[12] Nathan Farrington, George Porter, Sivasankar Radhakrishnan, Hamid Hajabdolali

Bazzaz, Vikram Subramanya, Yeshaiahu Fainman, George Papen, and Amin

Vahdat. Helios: A Hybrid Electrical/Optical Switch Architecture for Modular

Data Centers. ACM SIGCOMM (2010).

[13] Monia Ghodbadi, Ratul Mahajan, Amar Phanishayee, Houman Rastegarfar, Pierre-

Alexandre Blanche, Madeleine Glick, Daniel Kilper, Janardhan Kulkarni, Gireeja

Ranade, and Nikhil Devanur. ProjecToR: Agile Reconfigurable Datacenter

Interconnect. ACM SIGCOMM (2016).

[14] Madeleine Glick, David G Andersen, Michael Kaminsky, and Lily Mummert.

Dynamically Reconfigurable Optical Links for High-bandwidth Data Center

Networks. Optical Fiber Communication Conference (2009).
[15] Google. Pulling Back the Curtain on Google’s Network Infrastructure. (2015).

https://goo.gl/hx0vz3.

[16] Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula,

Changhoon Kim, Parantap Lahiri, David A. Maltz, Parveen Patel, and Sudipta

Sengupta. VL2: A Scalable and Flexible Data Center Network. ACM SIGCOMM
(2009).

[17] Daniel Halperin, Srikanth Kandula, Jitendra Padhye, Paramvir Bahl, and David

Wetherall. Augmenting Data Center Networks with Multi-Gigabit Wireless Links.

ACM SIGCOMM (2011).

[18] Navid Hamedazimi, Zafar Qazi, Himanshu Gupta, Vyas Sekar, Samir R Das, Jon P

Longtin, Himanshu Shah, and Ashish Tanwer. FireFly: A Reconfigurable Wireless

Data Center Fabric Using Free-Space Optics. ACM SIGCOMM (2014).

[19] Brandon Heller, Srinivasan Seetharaman, Priya Mahadevan, Yiannis Yiakoumis,

Puneet Sharma, Sujata Banerjee, and Nick McKeown. ElasticTree: Saving Energy

in Data Center Networks. USENIX NSDI (2010).
[20] Sangeetha Abdu Jyothi, Ankit Singla, Brighten Godfrey, and Alexandra Kolla.

Measuring and Understanding Throughput of Network Topologies. IEEE SC
(2016).

[21] Sangeetha Abdu Jyothi, Ankit Singla, Chi-Yao Hong, Lucian Popa, Brighten

Godfrey, and Alexandra Kolla. Topobench. (2016). https://github.com/netarch/

topobench/.

[22] Srikanth Kandula, Dina Katabi, Shan Sinha, and Arthur Berger. Flare: Responsive

Load Balancing Without Packet Reordering. ACM CCR (2007).

[23] John Kim, Wiliam J. Dally, Steve Scott, and Dennis Abts. Technology-Driven,

Highly-Scalable Dragonfly Topology. ACM SIGARCH (2008).

[24] Yunpeng James Liu, Peter Xiang Gao, Bernard Wong, and Srinivasan Keshav.

Quartz: A New Design Element for Low-Latency DCNs. ACM SIGCOMM (2014).

[25] Alexander Lubotzky, Ralph Phillips, and Peter Sarnak. Ramanujan Graphs.

Combinatorica (1988).
[26] William M. Mellette, Rob McGuinness, Arjun Roy, Alex Forencich, George Papen,

Alex C. Snoeren, and George Porter. RotorNet: A Scalable, Low-complexity,

Optical Datacenter Network. ACM SIGCOMM (2017).

[27] George Porter, Richard Strong, Nathan Farrington, Alex Forencich, Pang Chen-

Sun, Tajana Rosing, Yeshaiahu Fainman, George Papen, and Amin Vahdat.

Integrating Microsecond Circuit Switching into the Data Center. ACM SIGCOMM
(2013).

[28] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C. Snoeren.

Inside the Social Network’s (Datacenter) Network. ACM SIGCOMM (2015).

[29] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armistead, Roy

Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie Germano, Anand

Kanagala, Jeff Provost, Jason Simmons, Eiichi Tanda, Jim Wanderer, Urs Hölzle,

Stephen Stuart, and Amin Vahdat. Jupiter Rising: ADecade of Clos Topologies and

Centralized Control in Google’s Datacenter Network. ACM SIGCOMM (2015).

[30] Ankit Singla, P Brighten Godfrey, and Alexandra Kolla. High Throughput Data

Center Topology Design. USENIX NSDI (2014).
[31] Ankit Singla, Chi-Yao Hong, Lucian Popa, and P. Brighten Godfrey. Jellyfish:

Networking Data Centers Randomly. USENIX NSDI (2012).
[32] Ratko V. Tomic. Optimal Networks from Error Correcting Codes. ACM/IEEE

ANCS (2013).
[33] Asaf Valadarsky, Gal Shahaf, Michael Dinitz, and Michael Schapira. Xpander:

Towards Optimal-Performance Datacenters. ACM CoNEXT (2016).

[34] Erico Vanini, Rong Pan, Mohammad Alizadeh, Tom Edsall, and Parvin Taheri. Let

It Flow: Resilient Asymmetric Load Balancing with Flowlet Switching. USENIX
NSDI (2017).

[35] Guohui Wang, David G. Andersen, Michael Kaminsky, Konstantina Papagiannaki,

T. S. Eugene Ng, Michael Kozuch, and Michael Ryan. c-Through: Part-time Optics

in Data Centers. ACM SIGCOMM (2010).

[36] Damon Wischik, Costin Raiciu, Adam Greenhalgh, and Mark Handley. Design,

Implementation and Evaluation of Congestion Control for Multipath TCP.

USENIX NSDI (2011).
[37] Yiting Xia and TS Eugene Ng. Flat-tree: A Convertible Data Center Network

Architecture from Clos to Random Graph. ACM HotNets (2016).
[38] J.Y. Yen. Finding the K Shortest Loopless Paths in a Network. Management Science

(1971).

[39] Rui Zhang-Shen and Nick McKeown. Designing a Predictable Internet Backbone

with Valiant Load-balancing. IEEE IWQoS (2005).
[40] Xia Zhou, Zengbin Zhang, Yibo Zhu, Yubo Li, Saipriya Kumar, Amin Vahdat,

Ben Y Zhao, and Haitao Zheng. Mirror Mirror on the Ceiling: Flexible Wireless

Links for Data Centers. ACM SIGCOMM (2012).

https://github.com/ndal-eth/netbench
https://goo.gl/hx0vz3
https://github.com/netarch/topobench/
https://github.com/netarch/topobench/

	Abstract
	1 Introduction
	2 Network flexibility
	2.1 Fat-trees are inflexible
	2.2 Throughput proportionality

	3 State-of-the-art static network topologies
	4 Dynamic network topologies
	4.1 Static v. un/restricted dynamic nets: a toy example
	4.2 Barriers to the deployment of dynamic networks

	5 Static Inflexible
	6 Simple, effective routing on static networks
	6.1 ECMP does not always suffice
	6.2 VLB does not always suffice
	6.3 A robust ECMP-VLB hybrid
	6.4 Experimental setup
	6.5 Results: HYB performs well across workloads
	6.6 Results: Matching the gains of dynamic networks
	6.7 Results: more on skewed traffic

	7 Lessons and future directions
	7.1 Static networks
	7.2 Dynamic networks

	8 Recent developments in dynamic networks
	9 Conclusion
	References

