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ABSTRACT

Deep reinforcement learning (RL) has recently been successfully
applied to networking contexts including routing, flow scheduling,
congestion control, packet classification, cloud resource manage-
ment, and video streaming. Deep-RL-driven systems automate de-
cision making, and have been shown to outperform state-of-the-art
handcrafted systems in important domains. However, the (typi-
cal) non-explainability of decisions induced by the deep learning
machinery employed by these systems renders reasoning about
crucial system properties, including correctness and security, ex-
tremely difficult. We show that despite the obscurity of decision
making in these contexts, verifying that deep-RL-driven systems
adhere to desired, designer-specified behavior, is achievable. To
this end, we initiate the study of formal verification of deep RL and
present Verily, a system for verifying deep-RL-based systems that
leverages recent advances in verification of deep neural networks.
We employ Verily to verify recently-introduced deep-RL-driven
systems for adaptive video streaming, cloud resource management,
and Internet congestion control. Our results expose scenarios in
which deep-RL-driven decision making yields undesirable behavior.
We discuss guidelines for building deep-RL-driven systems that are
both safer and easier to verify.
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1 INTRODUCTION

Today’s network protocols and systems are handcrafted by human
experts with extensive domain-specific knowledge. Recently, net-
working researchers have begun exploring a compelling alternative
approach: employing deep learning [19] machinery to automate
decision making.

This novel approach to system design builds on the classical
reinforcement learning (RL) [31] framework. In RL, an agent au-
tomatically learns decision rules that yield high performance by
continuously evaluating the impact of selected actions on experi-
enced performance. In deep RL, these decision rules are learned
by training a deep neural network (DNN), whose inputs reflect the
observed environment state when making the decision, and whose
outputs capture the resulting decision. DNNs have revolutionized
computer vision [17], speech recognition [10], game playing [28],
and other areas, because of their ability to automatically learn, from
empirical observations, complex mappings from inputs to outputs.

Deep RL has recently been applied to networking contexts in-
cluding cloud resource management [23], packet classification [20],
routing [33], congestion control [12], and video streaming [24],
and also to various additional system design contexts (such as
compilers [9] and databases [16]). The performance of these deep-
RL-driven systems has been shown to match or even surpass that
of handcrafted solutions.

Verifying deep-RL-driven systems. While deep RL is a novel
and exciting paradigm for system design, it unfortunately inher-
its a major drawback of DNNs: the (typical) non-explainability of
decisions. Given the opaque nature of DNNG, it is difficult to deter-
mine whether a deep-RL-based system satisfies crucial correctness
and security requirements. Of course, manually-created software is
also prone to error, but many techniques and best practices (e.g.,
code reviews, refactoring, modular designs) can be applied to miti-
gate the risk of misbehavior. Unfortunately, these techniques are
inapplicable to DNNs.

Here, we advocate employing a formal verification approach to
address this challenge. Formal verification is an automated and
rigorous approach for checking the correctness of systems. We
propose formally specifying desired behaviors of a deep-RL-driven
system, and then applying formal verification machinery to check
whether the system always satisfies the specification.

Introducing Verily. We present the first (to the best of our knowl-
edge) formal verification framework for deep RL and use this frame-
work to design Verily, a verification tool for deep-RL-driven systems.
Verily’s design combines two elements from formal verification liter-
ature: (1) methodologies for scalable model checking; and (2) recent
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developments in the formal verification of DNNs [13], a topic which
has received considerable attention of late [7, 8, 11, 13, 15, 34].

Verily can be used to establish that specified requirements from
a deep-RL-driven system are satisfied. This is important, e.g., for
determining at what point a deep-RL-based system is “sufficiently
trained” (similar to acceptance tests for traditional software), and
for ensuring that a system achieves desired service-level objectives.
Importantly, when Verily determines that the system does not sat-
isfy a certain requirement, it provides a concrete scenario (a counter
example) to demonstrate this. These counter examples can be used
to guide changes to the DNN architecture and/or to identify cir-
cumstances in which the deep-RL-generated decisions should be
overridden.

We evaluate Verily on three deep-RL-driven systems: the Pen-
sieve adaptive video streaming scheme [24], the DeepRM scheduler
for cloud resource management [23], and the Custard Internet con-
gestion controller [12]. We formulate natural requirements for each
of these systems and apply Verily to determine whether these are
always satisfied and, if not, generate counter examples. Our pre-
liminary evaluation results expose several problems in the tested
systems, and suggest that the formal verification approach (and,
more concretely, the Verily tool) can play an important role in the
design and deployment of safer deep-RL-based systems.

2 BACKGROUND
2.1 Deep-RL-Driven Systems

In RL [31], an agent observes, at each discrete time step t € 0,1, ...,
a state of its environment s; and selects an action a;. After selecting
its action, the agent observes a reward r;, representing its loss/gain
from selecting a;. The agent’s goal is to choose a policy 7, i.e., a map-
ping of states to actions, which maximizes the expected cumulative
discounted return R; = E[ vt rt], fory e [0, 1). The parameter
y is termed the discount factor. Recent advances in deep RL employ
deep neural networks to approximate the optimal 7z [26, 29].

RL provides a useful abstraction for sequential decision mak-
ing and, in particular, is applicable also when (i) the agent may
only possess partial information about the current state; and (ii)
the implications of choosing an action may become clear only in
hindsight (“delayed rewards”).

To illustrate the promise of utilizing deep RL for system de-
sign, we briefly discuss its recent application to HTTP-based video
streaming [24]. To optimize user quality of experience (QoE), video
clients employ adaptive bitrate (ABR) protocols to dynamically
select the bitrates (resolutions) of requested video chunks (say, 4-
second video segments). ABR protocols map local observables such
as the occupancy of the client’s playback buffer and the download
times of prior video chunks, to choices of bitrates for upcoming
video chunks. Today’s protocols typically rely on “handwired” map-
pings from local observables to selected bitrates, devised by human
experts. In contrast, the deep-RL-driven Pensieve [24] ABR protocol
automatically learns high-performance bitrate selection policies
from empirical data. Pensieve does so by testing the implications of
different bitrate selections for performance, as captured by a reward
function that reflects QoE goals such as sending at high bitrates
and avoiding client video rebuffering and jitter in bitrates. A DNN
is employed to map observables to bitrate selections, thus enabling
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Figure 1: The neural network verification scheme.

Pensieve to efficiently learn complex ABR policies. Experimental
and empirical evaluations suggest that Pensieve outperforms the
widely used handcrafted algorithms, even in environments with
different characteristics than those of its training environment.

2.2 Deep Neural Network Verification

Following the rise in popularity of DNNs, the verification commu-
nity has begun addressing the need to verify neural networks [3, 7,
8, 11, 13-15, 18, 18, 34]. Because neural networks are constructed
from a small set of relatively simple arithmetical operations, the
DNN verification problem is decidable (which is often not the case
for verification of manually crafted code). However, although decid-
able, DNN verification is computationally complex (NP-complete)
even in simple cases [13], and scalability is a major hindrance for
verification tools. Despite this, verification technology is rapidly
improving and, as demonstrated by us and by others, existing tools
are already sufficient for tacking real-world problems of interest.

A DNN verification query is comprised of the following: (i) a
neural network N; (ii) an input property P; and (iii) an output prop-
erty Q. A verification engine then tries to answer the question “does
there exist an input vector x, such that P(x) holds and Q(N(x)) also
holds?”, where N(x) is the output vector that the neural network
produces for input x. In other words, the verification engine seeks a
particular input x that satisfies the input property P, and is mapped
by the neural network to an output that satisfies the output prop-
erty Q. The verification process has two possible outcomes: (1) an
unsat result, indicating that no such input exists; and (2) a sat result,
accompanied by a concrete input x¢ such that P(x) and Q(N(xp))
hold. See Fig. 1 for an illustration. Q typically expresses the negation
of the desired property, and thus an unsat result indicates that the
property holds, whereas sat indicates a violation that occurs for xy.

An important distinction between verification and other com-
mon approaches for quality assurance, such as testing and simula-
tion, is that a single verification query can provide formal guaran-
tees about the behavior of the system for infinitely many inputs.
This can help to ensure, e.g., that a DNN operates correctly when
presented with inputs that were not part of its training or validation
sets. In some cases, verification queries can even be used to explain
how certain decisions are reached by the DNN [4].
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So far, DNN verification has focused mostly on supervised learn-
ing, which is prevalent, e.g., in computer vision and natural lan-
guage processing. Our work is, to the best of our knowledge, the
first application of formal verification to deep RL. As discussed
below, deep RL poses new challenges for formal verification.

3 VERIFYING DEEP-RL-DRIVEN SYSTEMS

Verifying DNNSs in the context of deep RL differs from prior ap-
proaches to DNN verification, because in deep RL, the DNN’s output
at a certain time step (which induces the agent’s action at that time
step) influences the input to the DNN at later points in time. Thus,
verifying deep-RL-driven systems involves reasoning about inter-
related sequences of DNN evaluations.

We present a scheme for deep RL verification that addresses
this challenge by considering the space of all possible environ-
ment states S, and using formal verification to identify undesirable
sequences of steps through this space.

Specifically, for a particular state x € S (which constitutes a
possible input to the DNN-based RL agent), let &(x) denote the
set of states reachable from x within a single time step. A state
x’ € &(x) is thus a state that can potentially be reached after
applying the DNN to x to obtain the agent’s action N(x), and letting
the environment react to this action.

Going back to the video streaming example, a state x might
encode (as in [24]) the client’s current buffer occupancy, download
times of the w most recently downloaded video chunks (for some
fixed w > 0), the number of remaining chunks to download, etc.
N(x) encodes the network’s bitrate selection for input x, say, SD
or HD. &(x) encodes the states reachable from x by updating the
client’s buffer occupancy after downloading the video chunk in the
selected bitrate N(x), updating the w most recent download times
to incorporate the last downloaded chunk, decreasing the number
of chunks to download by 1, etc.

Using the aforementioned formulation, we propose an approach
for verifying two kinds of specifications: safety properties and
liveness properties.

Safety properties indicate that nothing bad happens in the system.
In the video streaming context, for instance, a safety property might
capture the desired behavior that if all recently downloaded video
chunks were in HD and were downloaded quickly, the requested
video resolution should not be changed to SD. Given a predicate
I(x) that returns true iff x is a possible initial state of the system,
and a predicate B(x) that returns true iff x is a bad state, i.e., a state
in which the safety property is violated, we create the following

query:
k-1 k

et 1) A\ xin € 86 A (\/ Bxi)
i=1 i=1

Intuitively, this query is satisfiable iff there is a sequence of consec-
utive states x1, . . ., X, such that x; is an initial state and there is a
bad state reachable from x; within k or fewer steps. Clearly, such
a sequence constitutes a counter example to the property being
checked.

This type of query, referred to as bounded model checking [2],
seeks safety violations of length up to k. Because of the limitation
on path length (k), this approach is incomplete: violations it detects
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are correct, but it may overlook other violations (that correspond to
longer paths in the state space). However, as we later demonstrate,
examining paths of length k = 2 is often sufficient for finding
counter examples.

Determining that state x;1 is immediately reachable from x;, i.e.,
xi+1 € E(x;), and that a state x; is bad, i.e., B(x;), involves reasoning
about the operation of the DNN. This can be accomplished using
existing DNN verification tools.

Liveness properties indicate that “good things eventually hap-
pen” Such properties can express, e.g., that a DNN that performs
cloud resource management never starves a particular job, which is
equivalent to specifying that every job eventually gets scheduled. A
liveness property is violated if the system can enter an infinite loop
in which good states are never reached. Given a predicate G(x) that
returns true iff x is a good state, we formulate this property as:

E!xl, ooy Xt
k-1 k k-1

16e0) A (/\ xi41 € EG)) A\ =6 A (\/ 3¢ = x1)
i=1 i=1 i=1

This formula captures paths of the form x, . . ., x; such that x;
is an initial state, each state is a successor of the preceding state,
none of the states are good, and for some 1 < j < k the sequence
of states xj, . .., xj forms a cycle (x; is also a successor of xi). As
before, this formulation only considers paths of length up to k, and
so is incomplete. DNN verification tools can be applied to validate
the succession of states and non-goodness of states.

— G

—
Figure 2: Examples for violated safety and liveness proper-
ties.

An illustration of the approach for safety and liveness properties
appears in Fig. 2. Each node in the figure represents a system state,
and edges indicate possible successor states. On the left-hand side
graph, there exists a path from the initial state to the bad state
(marked B) for k = 4, but not for k = 1, 2, 3. On the right-hand side
graph, there exists a path from the initial state that cycles without
reaching a good state (marked G) for k = 5, but not for k = 1, 2,3, 4.

When verifying safety and liveness properties, it is better to con-
sider larger values of k, as this covers more potential violations (all
paths of length at most k). However, verification is computationally
expensive and so considering larger values of k renders the query
more difficult to solve. Hence, a reasonable approach is to start
out with small values of k and gradually increase k as time and
resources permit. This approach would be particularly appealing
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if combined with incremental verification engines: engines that
can re-use some of the work done for smaller values of kK when
solving queries with larger values of k. There exist techniques for
incremental verification, although to the best of our knowledge
they have not yet been applied in the context of DNNs.

Verily. We build on the aforementioned ideas to implement a ver-
ification platform called Verily. As its underlying engine, Verily
uses the Marabou verification tool for deep neural networks [15].
The Marabou tool is based on a satisfiability modulo theories (SMT)
verification engine that operates on feed-forward neural networks
with piecewise-linear activation functions. Marabou seeks inputs
to a DNN that satisfy an input property P, and for which the DNN’s
output satisfies an output property Q. Both input and output prop-
erties are given as conjunctions of linear constraints. Verily lever-
ages Marabou to resolve bounded model checking queries of the
aforementioned forms. Of course, Marabou could be replaced with
another verification engine with similar functionality.

4 THREE CASE STUDIES

To demonstrate the usefulness of our approach, we present be-
low preliminary evaluation results. We evaluate Verily on three
recent deep-RL-driven systems: (1) the DeepRM online scheduler
for cloud resource management [23], (2) the Pensieve adaptive
video streamer [24], and (3) the Custard Internet congestion con-
troller [12].

We formulate natural requirements for each of these systems,
and use Verily to determine whether these are satisfied or not (and,
if not, generate concrete counter examples). Our evaluation of both
DeepRM and Pensieve uses the released DNN models, training data,
and default configurations for these systems [22, 25]. The code and
data for Custard was supplied by the authors of [12]. All of our
experiments were conducted on a laptop with an Intel i7-4710MQ,
2.50GHz CPU, using 16GB of memory.

For several of the properties that were tested, Verily was able to
provide counter examples. Further, these counter examples were
fairly simple, highlighting the possible vulnerabilities of these sys-
tems. We regard these findings as evidence of the potential benefits
of using verification as part of the design of deep-RL-driven sys-
tems.

Disclaimer: Our negative results for the evaluated systems should
be taken with a grain of salt for two reasons: (1) some of these
systems incorporate “sanity checks” for the purpose of overriding
the DNN in scenarios in which it might yield undesirable actions,
and (2) the results are naturally highly dependent on the data on
which the DNN is trained and the training duration.

Importantly, our aim is not to suggest that the evaluated sys-
tems cannot, with sufficient training on sufficient data, or by in-
corporating manual DNN-overriding rules, satisfy the considered
requirements. The goal of our evaluation is to present evidence that
(1) Verily provides system designers with the means to determine
whether the training data and training duration are sufficient to
guarantee desired system properties, and whether manual rules
for overriding the DNN’s output might be needed; and (2) Verily
provides system users with the means to verify safety and liveness
properties of interest.
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4.1 Verifying Cloud Resource Scheduling

The DeepRM Online Scheduler. DeepRM [23] is a system for
managing cloud computing resources. We present below an infor-
mal overview of DeepRM and refer the reader to [23] for a detailed
exposition.

DeepRM keeps track of (i) the usage status of different resources,
e.g., current usage of system CPU and memory; (ii) a queue of M
jobs to be scheduled, for a fixed M > 0, with the duration and
resource requirements for each of these jobs; and (iii) the number
of jobs awaiting to be scheduled (the backlog) beyond the jobs
in the queue. The combination of (i)-(iii) constitutes the input to
DeepRM’s DNN. The DNN’s output determines the choice of next
action: either schedule a specific job from the queue of active jobs,
or wait, i.e., do not schedule any job at this time.

When a job is scheduled, the status of available system resources
is updated accordingly, the job is removed from the queue of pend-
ing jobs, and a new job from the backlog might take its place. As
time progresses, the execution of scheduled jobs progresses, re-
sources are freed, and the system may schedule new jobs.

Verifying DeepRM. We consider two types of safety properties:
(1) when system resources are available, jobs in the active queue are
scheduled (as opposed to waiting), and (2) when system resources
are not available, DeepRM does not schedule jobs (and waits for
system resources to be freed). We point out that Verily could also
be used to verify more elaborate safety properties, e.g., that jobs
are scheduled within T time steps.!

Consider a scenario where system resources that can be used to
execute jobs consist of 10 units of CPU and 10 units of memory (for
an appropriate definition of units). We consider two types of jobs:
small jobs, which require 1 unit of each resource for a single time
unit, and large jobs, which require the entire resource pool for 20
time units. We apply Verily to DeepRM for the purpose of verifying
the following properties:

e A1l: When system resources, namely CPU and memory, are
only 50% utilized (each) and there are five small jobs in the
queue, DeepRM’s DNN always schedules one of the five jobs.

e A2: When system resources are 0% utilized and there is a sin-
gle large job in the queue, DeepRM’s DNN always schedules
that job.

e B1: When system resources are fully utilized and there are
five small jobs waiting in the queue, DeepRM’s DNN always
outputs a wait action.

e B2: When system resources are fully utilized and there are
five large jobs waiting in the queue, DeepRM’s DNN always
outputs a wait action.

Technically, we encoded these properties in a straightforward
manner. The existence of pending jobs, the required resources for
these jobs, and also the state of the backlog were encoded by fixing
the corresponding DNN input values to the appropriate values as
part of our input property P. For resource usage, the design of
DeepRM’s DNN allows for a wide range of values that describe a
given situation (e.g., there are infinitely many inputs that describe
the fact that a certain CPU is 50% utilized). This range of values is

!'This would entail incorporating additional information into the states in S indicating
the time that has passed since a job was last scheduled.
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intended for visualization purposes [23]. Thus, in order to restrict
the resource usage values to those described in each property, we
put lower and upper bounds on the corresponding values of the
DNN’s inputs, to bound them within the range that matches the
situation described in the property.

We verified the above properties using the safety property encod-
ing discussed in Section 3. Our results showed that while property
A2 held, properties A1, B1 and B2 did not hold for the evaluated
DNN, and Verily provided counter examples for each of them. In-
terestingly, counter examples exist even when setting k = 2, i.e., for
paths of length 1 (see Section 3). Further, these verification queries
took only a few seconds on average to finish. This is to be expected,
as many of the input variables were fixed in each property, leaving
a relatively small input space for the verification tool to explore.

4.2 Verifying Adaptive Video Streaming

The Pensieve Video Streamer. We next turn our attention to the
Pensieve system, discussed in Section 2.

Verifying Pensieve. We check how Pensieve behaves in situations
in which the desirable action is clear: either network conditions
are excellent and so the highest bitrate available (HD) should be
selected, or, alternatively, the network conditions are extremely
poor and so the lowest available bitrate (SD) should be selected.
Again, Verily could have also been applied to verify more elaborate
safety properties, e.g., that the bitrate is changed to HD/SD within T
time steps for some fixed T > 0. We verify the following properties:

e A: When only a single video chunk is left to play, the client’s
buffer is quite full (> X %), and all recently downloaded video
chunks were in HD and downloaded quickly (specifically,
faster than the video segment length, set to be 4s), the DNN
should output HD.

e B: When the client’s buffer is almost empty (< 4s) and all
recently downloaded video chunks were in SD and down-
loaded slowly (> 4s), the DNN should output SD.

In order to encode these properties in Verily, we constructed
verification queries that restricted the DNN’s inputs in the follow-
ing way. The inputs describing the last bit rate (e.g., HD or SD)
and the number of remaining chunks were fixed according to the
property at hand. Another input, which indicates the current buffer
size (in seconds), was bounded from above and from below — again,
according to the property being tested. The remaining inputs, i.e.
those describing the throughput history and download time his-
tory of the network, proved more difficult to properly encode. In
real scenarios, we expect these two inputs to be correlated: their
product should equal the size of the block that was downloaded at
each point in history. This kind of constraint, which is non-linear,
was not directly supported by our underlying verification tool. In
order to circumvent this issue, while still restricting our verification
queries to realistic scenarios, we used the following strategy: we
ran 160 different verification queries, each time fixing the values of
the download time history and bounding the throughput history
values to a range that was realistic for the particular (fixed) down-
load time history values. While this approach did not consider all
possible download time values, it covered sufficiently many options
to discover many counter examples.

NetAI’19, August 23, 2019, Beijing, China

Each individual verification query took an average of 40 seconds
to solve, leading to a total run time of 100 minutes for running
all 160 queries for each of the two properties. Verily concluded,
again using the safety property encoding in Section 3, that both
properties were violated, and provided a counter example of length
k = 2 for each. In fact, in 55 of the counter examples discovered for
property A, not only is HD not selected, but SD is selected instead.

4.3 Verifying Internet Congestion Control

The Custard Congestion Controller. Custard [12] is a deep-RL-
based congestion controller. Custard’s DNN receives as input a
bounded length history of (1) observations about past network con-
ditions, including throughputs, loss rates, and changes in latency;
(2) previous sending rates; and (3) previous rewards. The DNN’s
outputs indicate requested changes to the current sending rate.

Verifying Custard. Custard’s underlying DNN was originally de-
signed to use hyperbolic tangent activation functions. These func-
tions, which are not piecewise-linear, are not currently supported by
Verily’s underlying verification engine. To resolve this, we trained
a similar neural network, in which the hyperbolic tangents were
replaced with (piecewise-linear) rectified linear unit functions, and
used it for our verification queries. Our trained DNN achieved re-
ward values that were similar to those obtained by the original
DNN.

We consider the simple scenario in which a single Custard-
controlled transport-layer connection is the only sender on a link.
We ask whether, in this scenario, Custard can get stuck indefinitely
at a rate that is significantly lower than the link’s bandwidth, thus
failing to efficiently utilize the link.

More specifically, we wish to refute the existence of an input state
(bounded-length history) x, such that when presented with input x
Custard decides not to change its rate, and then observes the exact
same input state x (and so forth). Specifically, state x is such that
(1) the sending rate has remained fixed throughout the observed
history; (2) the received rate (the rate of packet acknowledgment
receipt) has also remained fixed and matches the sending rate; (3) no
loss was experienced and network latency has remained constant
throughout observed history; and (4) the DNN’s output implies
that the sending rate should not be changed. Observe that if there
are no other senders on a link, and if the (constant) sending rate
in x is lower than the link’s bandwidth B, (1)-(4) above imply that
x € &(x) since the sending rate remains unchanged. Thus, the
existence of a state x as described above implies that Custard might,
after deciding to not change its rate at x, observe the same state
again, reach the same decision, and so on, without ever utilizing
the (potentially much higher) full available bandwidth.

Encoding this property in Verily was straightforward. For each
input that represents a series of observations (a history), we stip-
ulated that all observations are equal to each other to capture the
fact that the state is stable. The inputs describing the sending and
received rates were set to be equal to each other, and could take
on any value between 0 and 10° (megabits per second). The input
representing past loss rate was set to 0, and the one representing
past latency could take on any value between 0 and 100 (millisec-
onds). The last input, which represents the reward function, was
calculated according to the latency and received rates values.
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We utilized Verily to verify the liveness property capturing the
situation described above (with k = 2). Verily concluded that no
such state x existed, implying the system’s correctness. Allowing
the received rates and the past sending rates to differ slightly from
each other also did not yield counter examples. Each query took
approximately 1 minute to run. We leave the investigation of more
complex specifications, and of larger values of k, to future work.

5 RELATED WORK

Our approach for verification of deep-RL-driven systems relies on
a DNN verification engine as a black box. Verily uses the SMT-
based Marabou tool [15], but other verification tools could also
potentially be used in its stead, including abstract-interpretation-
based engines [7], symbolic interval reasoners [34], or LP-based
tools [32] (see [21] for a recent survey). As verification technology
progresses, and such verification engines become more scalable,
the scalability of our approach to deep-RL verification will also
improve.

Approaches for verifying the correctness of non-deep RL-driven
systems include policy extraction, where instead of the DNN com-
ponent, an explainable controller such as decision trees [1, 6] is
utilized.

Recent studies have addressed the topic of verifying hybrid sys-
tems with DNN controllers [5, 30]. The case of hybrid systems is
similar to ours in the sense that the neural network controller is
evaluated repeatedly, and past evaluations may affect future eval-
uations. However, much of the focus in that line of work is on
handling the continuous nature of the hybrid systems.

6 DISCUSSION

Lessons for deep-RL-based system design. Our experimenta-
tion with Verily taught us important lessons regarding the design
of deep-RL-based systems. For example, a crucial design element
is the choice of inputs to feed into the DNN. Naturally, the DNN’s
inputs should contain sufficient information to facilitate good deci-
sions. However, the choice of inputs also has important implications
for network correctness, and also for its amenability to verifica-
tion. For example, in the DeepRM case, the DNN receives as input
variables that seemingly have no significance for decision making
(e.g., are used solely for system visualization). However, our results
reveal that certain value assignments for these input variables may
trigger undesirable decision making in the DNN, even if all other
input variables remain unchanged. It is also beneficial for the veri-
fication process if the input values are continuous, as opposed to
discrete; and also if there are no tightly coupled (i.e., redundant)
inputs to the network. This tends to render verification computa-
tionally easier, due to limitations inherent in existing verification
technology.

Another design decision that affects amenability to verification
is the choice of neural network architecture, and, specifically, the
choice of activation functions. Many verification engines, including
Verily’s underlying engine Marabou, only support certain activation
functions. A choice of piecewise linear activation functions, which
are supported by many engines, will make the resulting system
easier to verify (as discussed in the context of Custard in Section 4).

Kazak et al.

Ongoing and future research. We intend to extend Verily by in-
corporating invariant inference techniques [27] into our scheme.
This will enable verifying safety and liveness properties without
limiting the length of counterexamples to a small k, thus obtaining
stronger guarantees. Other natural directions for further research
are improving Verily by integrating additional underlying DNN ver-
ification engines, and applying Verily to verify additional properties
and in additional case studies.

7 CONCLUSION

Deep RL holds great promise for system design, but also gives rise to
new challenges. Due to the opacity of DNN-guided decision making,
deep-RL-driven systems may exhibit undesirable behaviors that are
hard for humans to detect beforehand. This risk must be mitigated
before deep RL is built into real-world systems. As DNN verification
techniques continue to evolve, we expect that they will play a key
role in certifying deep-RL-driven systems. We view Verily as an
exciting first step in this direction.
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