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Abstract
Deep neural networks (DNNs) play a crucial role in the field of machine learning, demon-
strating state-of-the-art performance across various application domains. However, despite
their success, DNN-based models may occasionally exhibit challenges with generalization,
i.e., may fail to handle inputs that were not encountered during training. This limitation is a
significant challenge when it comes to deploying deep learning for safety-critical tasks, as
well as in real-world settings characterized by substantial variability. We introduce a novel
approach for harnessing DNN verification technology to identify DNN-driven decision rules
that exhibit robust generalization to previously unencountered input domains. Our method
assesses generalization within an input domain by measuring the level of agreement between
independently trained deep neural networks for inputs in this domain. We also efficiently
realize our approach by using off-the-shelf DNN verification engines, and extensively evalu-
ate it on both supervised and unsupervisedDNNbenchmarks, including a deep reinforcement
learning (DRL) system for Internet congestion control—demonstrating the applicability of
our approach for real-world settings. Moreover, our research introduces a fresh objective for
formal verification, offering the prospect of mitigating the challenges linked to deploying
DNN-driven systems in real-world scenarios.
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1 Introduction

In the last decade, deep learning [61] has demonstrated state-of-the-art performance in natural
language processing, image recognition, game playing, computational biology, and numerous
other fields [5, 26, 35, 74, 81, 141, 142]. Despite its remarkable success, deep learning still
faces significant challenges that restrict its applicability in domains involving safety-critical
tasks or inputs with high variability.

One critical limitation lies in the well-known challenge faced by deep neural networks
(DNNs) when attempting to generalize to novel input domains. This refers to their tendency
to exhibit suboptimal performance on inputs significantly different from those encountered
during training. Throughout the training process, a DNN is exposed to input data sampled
from a specific distribution over a designated input domain (referred to as “in-distribution”
inputs). The rules derived from this trainingmay falter in generalizing to novel, unencountered
inputs, due to several factors: (1) the DNN being invoked in an out-of-distribution (OOD)
scenario, where there is a mismatch between the distribution of inputs in the training data
and that in the DNN’s operational data; (2) certain inputs not being adequately represented
in the finite training dataset (such as various, low-probability corner cases); and (3) potential
“overfitting” of the decision rule to the specific training data.

The importance of establishing the generalizability of (unsupervised) DNN-based deci-
sions is evident in recently proposed applications of deep reinforcement learning (DRL)
[87]. Within the framework of DRL, an agent, implemented as a DNN, undergoes train-
ing through repeated interactions with its environment to acquire a decision-making policy
achieving high performance concerning a specific objective (“reward”). DRL has recently
been applied to numerous real-world tasks [30, 73, 86, 88, 103, 105–107, 159, 176]. In many
DRL application domains, the learned policy is anticipated to perform effectively across a
broad spectrum of operational environments, with a diversity that cannot possibly be cap-
tured by finite training data. Furthermore, the consequences of inaccurate decisions can be
severe. This point is exemplified in our examination of DRL-based Internet congestion con-
trol (discussed in Sect. 4.3). Good generalization is also crucial for non-DRL tasks, as we
shall illustrate through the supervised-learning example of Arithmetic DNNs.

We introduce a methodology designed to identify DNN-based decision rules that exhibit
strong generalization across a range of distributions within a specified input domain. Our
approach is rooted in the following key observation. The training of a DNN-based model
encompasses various stochastic elements, such as the initialization of the DNN’s weights
and the order in which inputs are encountered during training. As a result, even when DNNs
with the same architecture undergo training to perform an identical task on the same training
data, the learned decision rules will typically exhibit variations. Drawing inspiration from
Tolstoy’s Anna Karenina [153], we argue that “successful decision rules are all alike; but
every unsuccessful decision rule is unsuccessful in its own way”. To put it differently, we
believe that when scrutinizing decisions made by multiple, independently trained DNNs on
a specific input, consensus is more likely to occur when their (similar) decisions are accurate.

Given the above, we suggest the following heuristic for crafting DNN-based decision
ruleswith robust generalization across an entire designated input domain: independently train
multiple DNNs and identify a subset that exhibits strong consensus across all potential inputs
within the specified input domain. This implies, according to our hypothesis, that the learned
decision rules of these DNNs generalize effectively to all probability distributions over this
domain. Our evaluation, as detailed in Sect. 4, underscores the tremendous effectiveness of
this methodology in distilling a subset of decision rules that truly excel in generalization
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across inputs within this domain. As our heuristic aims to identify DNNs whose decisions
unanimously align for every input in a specified domain, the decision rules derived through
this approach consistently achieve high levels of generalization, across all benchmarks.

Since our methodology entails comparing the outputs of various DNNs across potentially
infinite input domains, the utilization of formal verification is a natural choice. In this regard,
we leverage recent advancements in the formal verification of DNNs [3, 14, 16, 20, 43, 96,
121, 143, 170]. Given a verification query comprised of a DNN N , a precondition P , and a
postcondition Q, a DNN verifier is tasked with determining whether there exists an input x
to N such that P(x) and Q(N (x)) both hold.

To date, DNN verification research has primarily concentrated on establishing the local
adversarial robustness of DNNs, i.e., identifying small input perturbations that lead to the
DNNmisclassifying an input of interest [55, 62, 97]. Our approach extends the scope of DNN
verification by showcasing, for the first time (as far as we are aware), its utility in identifying
DNN-based decision rules that exhibit robust generalization. Specifically, we demonstrate
how, within a defined input domain, a DNN verifier can be employed to assign a score to a
DNN that indicates its degree of agreement with other DNNs throughout the input domain
in question. This, in turn, allows an iterative process for the gradual pruning of the candidate
DNN set, retaining only those that exhibit strong agreement and are likely to generalize
successfully.

To assess the effectiveness of ourmethodology, we concentrate on threewidely recognized
benchmarks in the field of deep reinforcement learning (DRL): (i) Cartpole, where a DRL
agent learns to control a cart while balancing a pendulum; (ii)Mountain Car, which requires
controlling a car to escape from a valley; and (iii) Aurora, designed as an Internet congestion
controller. Aurora stands out as a compelling case for our approach.While Aurora is designed
to manage network congestion in a diverse range of real-world Internet environments, its
training relies solely on synthetically generated data. Therefore, for the deployment ofAurora
in real-world scenarios, it is crucial to ensure the soundness of its policy across numerous
situations not explicitly covered by its training inputs.

Additionally, we consider a benchmark from the realm of supervised learning, namely,
DNN-based arithmetic learning, inwhich the goal is to train aDNN to correctly perform arith-
metic operations. Arithmetic DNNs are a natural use-case for demonstrating the applicability
of our approach to a supervised learning (and so, non-DRL) setting, and since generaliza-
tion to OOD domains is a primary focus in this context and is perceived to be especially
challenging [101, 156]. We demonstrate how our approach can be employed to assess the
capability of Arithmetic DNNs to execute learned operations on ranges of real numbers not
encountered in training.

The results of our evaluation indicate that, across all benchmarks, our verification-driven
approach effectively ranks DNN-based decision rules based on their capacity to generalize
successfully to inputs beyond their training distribution. In addition, we present compelling
evidence that our formal verification method is superior to competing methods, namely
gradient-based optimization methods and predictive uncertainty methods. These findings
highlight the efficacy of our approach. Our code and benchmarks are publicly available as
an artifact accompanying this work [10].

The rest of the paper is organized in the following manner. Section 2 provides background
on DNNs and their verification procedure. In Sect. 3 we present our verification-driven
approach for identifying DNN-driven decision rules that generalize successfully to OOD
input domains. Our evaluation is presented in Sect. 4, and a comparison to competing opti-
mization methods is presented in Sect. 5. Related work is covered in Sect. 6, limitations are
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covered in Sect. 7, and our conclusions are provided in Sect. 8. We include appendices with
additional information regarding our evaluation.
Note. This is an extended version of our paper, titled “Verifying Generalization in Deep
Learning” [9], which appeared at the Computer Aided Verification (CAV) 2023 conference.
In the original paper, we presented a brief description of our method, and evaluated it on
two DRL benchmarks, while giving a high-level description of its applicability to additional
benchmarks. In this extended version, we significantly enhance our original paper along
multiple axes, as explained next. In terms of our approach,we elaborate on how to strategically
design a DNN verification query for the purpose of executing our methods, and we also
elaborate on various distance functions leveraged in this context. We also incorporate a
section on competing optimization methods, and showcase the advantages of our approach
compared to gradient-based optimization techniques.We significantly enhance our evaluation
in the following manner:

(i) we demonstrate the applicability of our approach to supervised learning, and specifically
to Arithmetic DNNs (in fact, to the best of our knowledge, we are the first to verify
Arithmetic DNNs); and

(ii) we enhance the previously presented DRL case study to include additional results and
benchmarks.

We believe these additions merit an extended paper, which complements our original, shorter
one [9].

2 Background

Deep Neural Networks (DNNs) [61] are directed graphs comprising several layers, that
subsequently compute variousmathematical operations. Upon receiving an input, i.e., assign-
ment values to the nodes of the DNN’s first (input) layer, the DNN propagates these values,
layer after layer, until eventually reaching the final (output) layer, which computes the assign-
ment of the received input. Each node computes the value based on the type of operations to
which it is associated. For example, nodes in weighted-sum layers, compute affine combina-
tions of the values of the nodes in the preceding layer to which they are connected. Another
popular layer type is the rectified linear unit (ReLU) layer, in which each node y computes
the value y = ReLU(x) = max(x, 0), in which x is the output value of a single node from
the preceding layer. For more details on DNNs and their training procedure, see [61]. Fig. 1
depicts an example of a toy DNN. Given input V1 = [2, 1]T , the second layer of this toy DNN
computes the (weighted sum) V2 = [7,−6]T . Subsequently, the ReLU functions are applied
in the third layer, resulting in V3 = [7, 0]T . Finally, the DNN’s single output is accordingly
calculated as V4 = [14].
Deep Reinforcement Learning (DRL) [87] is a popular paradigm in machine learning, in
which a reinforcement learning (RL) agent, realized as a DNN, interacts with an environment
across multiple time-steps t ∈ {0, 1, 2, . . .}. At each discrete time-step, the DRL agent
observes the environment’s state st ∈ S, and selects an action N (st ) = at ∈ A accordingly.
As a result of this action, the environment may change and transition to its next state st+1,
and so on. During training, at each time-step, the environment also presents the agent with a
reward rt based on its previously chosen action. The agent is trained by repeatedly interacting
with the environment, with the goal ofmaximizing its expected cumulative discounted reward
Rt = E

[ ∑
t γ

t ·rt
]
, where γ ∈ [

0, 1
]
is a discount factor, i.e., a hyperparameter that controls
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Fig. 1 A toy DNN

the accumulative effect of past decisions on the reward. For additional details, see [65, 68,
137, 148, 149, 175].

Supervised Learning (SL) is another popular machine learning (ML) paradigm. In SL, the
input is a dataset of training data comprising pairs of inputs and their ground-truth labels
(xi , yi ), drawn from some (possibly unknown) distribution D. The dataset is used to train a
model to predict the correct output label for new inputs drawn from the same distribution.

Arithmetic DNNs. Despite the success of DNNs in many SL tasks, they (surprisingly) fail
to generalize for the simple SL task of attempting to learn arithmetic operations [156]. When
trained to perform such tasks, they often succeed for inputs sampled from the distribution
on which they were trained, but their performance significantly deteriorates when tested on
inputs drawn OOD, e.g., input values from another domain. This behavior is indicative of
Arithmetic DNNs tending to overfit their training data rather than systematically learning
from it. This is observed even in the context of simple arithmetic tasks, such as approximating
the identity function, or learning to sum up inputs. A common belief is that the limitations
of the classic learning processes, combined with DNNs’ over-parameterized nature, prevent
them from learning to generalize arithmetic operations successfully [101, 156].

DNNVerification.ADNNverifier [76] receives the following inputs: (i) a (trained) DNN N ;
(ii) a precondition P on the inputs of the DNN, effectively limiting the possible assignments
to be part of a domain of interest; and (iii) a postcondition Q on the outputs of the DNN.
A sound DNN verifier can then respond in one of the following two ways: (i) SAT, along
with a concrete input x ′ for which the query P(x ′) ∧ Q(N (x ′)) is satisfied; or (ii) UNSAT,
indicating no such input x ′ exists. Typically, the postcondition Q encodes the negation of the
DNN’s desirable behavior for all inputs satisfying P . Hence, a SAT result indicates that the
DNN may err, and that x ′ is an example of an input in our domain of interest, that triggers a
bug; whereas an UNSAT result indicates that the DNN always performs correctly.

For example, let us revisit the DNN in Fig. 1. Suppose that we wish to verify that for all
non-negative inputs the toy DNN outputs a value strictly smaller than 25, i.e., for all inputs
x = 〈v11, v21〉 ∈ R

2≥0, it holds that N (x) = v14 < 25. This is encoded as a verification query by

choosing a precondition restricting the inputs to be non-negative, i.e., P = (v11 ≥ 0∧v21 ≥ 0),
and by setting Q = (v14 ≥ 25), which is the negation of our desired property. For this specific
verification query, a sound verifier will return SAT, alongside a feasible counterexample such
as x = 〈1, 3〉, which produces v14 = 26 ≥ 25. Hence, this property does not hold for the
DNN described in Fig. 1. To date, a plethora of DNN verification engines have been put forth
[4, 55, 69, 76, 97, 162], mostly used in the context of validating the robustness of a general
DNN to local adversarial perturbations.
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3 Quantifying Generalizability via Verification

Our strategy for evaluating a DNN’s potential for generalization on out-of-distribution inputs
is rooted in the “Karenina hypothesis”: while there might be numerous (potentially infinite)
ways to generate incorrect results, correct outputs are likely to be quite similar .1 Therefore,
to pinpoint DNN-based decision rules that excel at generalizing to new input domains, we
propose the training of multiple DNNs and assessing the learned decision models based on
the alignment of their outputs with those of other models in the domain. As we elaborate
next, this scoring procedure can be conducted using a backendDNN verifier.We show how to
effectively distill DNNs that successfully generalize OOD, by iteratively filtering out models
that tend to disagree with their peers.

3.1 Our Iterative Procedure

To facilitate our reasoning about the agreement between two DNN-based decision rules over
an input domain, we introduce the following definitions.

Definition 1 [Distance Function]
Let O be the space of possible outputs for a DNN. A distance function for O is a
function d : O × O �→ R

+.

Intuitively, a distance function allows to quantify the (dis)agreement level between the deci-
sions of two DNNs, when fed the same input. We elaborate later on examples of various
distance functions that were used.

Definition 2 [Pairwise Disagreement Threshold]
Let N1, N2 be a pair of DNNs mapping inputs from the same input domain � to
the same output space O, and let d be a distance function. We define the pairwise
disagreement threshold (PDT) of the DNNs N1 and N2 as:

α = PDTd,�(N1, N2) � min
{
α′ ∈ R

+ | ∀x ∈ � : d(N1(x), N2(x)) ≤ α′}

This definition captures the notion that for every possible input in our domain �, DNNs N1

and N2 produce outputs that are (at most) α-distance apart from each other. Small α values
indicate that the N1 and N2 produce “close” values for all inputs in the domain �, whereas a
large α values indicate that there exists an input in � for which there is a notable divergence
between both decision models.

To calculate PDTvalues, ourmethod utilizes verification to performa binary search aiming
to find the maximum distance between the outputs of a pair of DNNs; see Alg. 1.

After being calculated, the Pairwise disagreement thresholds can subsequently be aggre-
gated to measure the overall disagreement between a decision model and a set of other
decision models, as defined next.

1 Not to be confused with the “Anna Karenina Principle” in statistics, for describing significance tests.
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Algorithm 1 Pairwise Disagreement Threshold
Input: DNNs (Ni , N j ), input domain �, distance function d, max. disagreement M > 0
Output: PDT(Ni , N j )

1: low ← 0, high ← M
2: while (low < high) do
3: α ← 1

2 · (low + high)

4: query ← SMT SOLVER 〈P ← �, [Ni ; N j ], Q ← d(Ni , N j ) ≥ α〉
5: if query is SAT then: low ← α

6: else if query is UNSAT then: high ← α

7: end while
8: return α

Definition 3 [Disagreement Score]
LetN = {N1, N2, . . . , Nk} be a set of k DNN-based decision models over an input
domain �, and let d be a distance function over the DNNs’ output domain. We
define a model’s disagreement score (DS) with respect to N , as:

DSN ,d,�(Ni ) = 1

|N | − 1

∑

j∈[k], j 
=i

PDTd,�(Ni , N j )

Intuitively, a disagreement score of a single DNN decision model measures the degree to
which it tends to disagree, on average, with the remaining models.

Iterative Scheme. Leveraging disagreement scores, our heuristic employs an iterative pro-
cess (seeAlg. 2) to choose a subset ofmodels that exhibit generalization to out-of-distribution
scenarios—as encoded by inputs in �. At first, k DNNs {N1, N2, . . . , Nk} are trained inde-
pendently on the training data. Next, a backend verifier is invoked in order to calculate, per
each of the

(k
2

)
DNN pairs, their respective pairwise-disagreement threshold (up to some

accuracy, ε). Next, our algorithm iteratively: (i) Calculates the disagreement score of each
model in the remaining model subset; (ii) Identifies models with (relatively) high DS scores;
and (iii) Removes them from the model set (Line 9 in Alg. 2). We also note that the algo-
rithm is given an upper bound (M) on the maximum difference, as informed by the user’s
domain-specific knowledge.

Termination. The procedure terminates after it exceeds a predefined number of iterations
(Line 3 in Alg. 2), or alternatively, when all remaining models “agree” across the input
domain �, as indicated by nearly identical disagreement scores (Line 7 in Alg. 2).

DSRemoval Threshold.There are various possible criteria for determining theDS threshold
above for which models are removed, as well as the number of models to remove in each
iteration (Line 8 in Alg. 2). In our evaluation, we used a simple and natural approach, of
iteratively removing the p% models with the highest disagreement scores, for some choice
of p (p = 25% in our case). A thorough discussion of additional filtering criteria (all of
which proved successful, on all benchmarks) is relegated to Appendix D.

3.2 Verification Queries

Next, we elaborate on how we encoded the queries, which we later fed to our backend
verification engine (Line 4 in Alg. 1), in order to compute the PDT scores for a DNN pair.
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Algorithm 2Model Selection Procedure
Input: Set of models N = {N1, . . . , Nk }, max disagreement M, number of ITERATIONS
Output: N ′ ⊆ N
1: PDT ← Pairwise Disagreement Thresholds(N , d, �,M) � table with all PDTs
2: N ′ ← N
3: for l = 1 . . .ITERATIONS do
4: for Ni ∈ N ′ do
5: currentDS[Ni ] ← DSN ′ (Ni ,PDT) � based on Definition 3
6: end for
7: if modelScoresAreSimilar(currentDS) then: break
8: modelsToRemove ← findModelsWithHighestDS(currentDS)
9: N ′ ← N ′ \ modelsToRemove � remove models that may disagree
10: end for
11: return N ′

Given a DNN pair, N1 and N2, we execute the following stages:

1. Concatenate N1and N2 to a new DNN N3 = [N1; N2], which is roughly twice the size
of each of the original DNNs (as both N1 and N2 have the same architecture). The input
of N3 is of the same original size as each single DNN and is connected to the second layer
of each DNN, consequently allowing the same input to flow throughout the network to
the output layers of N1 and N2. Thus, the output layer of N3 is a concatenation of the
outputs of both N1 and N2. A scheme depicting the construction of a concatenated DNN
appears in Fig. 2.

2. Encode a precondition P which represents the ranges of value assignments to the input
variables. As we mentioned before, the value-range bounds are supplied by the system
designer, based on prior knowledge of the input domain. In some cases, these values
can be predefined to match a specific OOD setting evaluated. In others, these values can
be extracted based on empirical simulations of the models post-training. For additional
details, we refer the reader to Appendix C.

3. Encode a postconditionQ which encapsulates (for a fixed slack α) and a given distance
function d : O × O �→ R

+, that for an input x ′ ∈ � the following holds:

d(N1(x
′), N2(x

′)) ≥ α

Examples of distance functions include:

(a) L1 norm:

d(N1, N2) = argmaxx∈�(|N1(x) − N2(x)|)
This distance function is used in our evaluation of the Aurora and Arithmetic DNNs
benchmarks.

(b) condition-distance(“c-distance′′): This function returns the maximal L1 norm of
two DNNs, for all inputs x ∈ � such that both outputs N1(x), N2(x) comply to
constraint c.

c-distance(N1, N2) � max
x∈� s.t. N1(x),N2(x)�c

(|N1(x) − N2(x)|)

This distance function is used in our evaluation of the Cartpole and Mountain Car
benchmarks. In these cases, we defined the distance function to be:

d(N1, N2) = min
c,c′ (c-distance(N1, N2), c’-distance(N1, N2))
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Fig. 2 To calculate the PDT
scores, we generated a new DNN
that is the concatenation of each
pair of DNNs (sharing the same
input)

4 Evaluation

Benchmarks.We extensively evaluated our method using four benchmarks: (i) Cartpole; (ii)
Mountain Car; (iii) Aurora; and (iv) Arithmetic DNNs. The first three are DRL benchmarks,
whereas the fourth is a challenging supervised learning benchmark. Our evaluation of DRL
systems spans two classic DRL settings, Cartpole [21] andMountain Car [108], as well as the
recently proposed Aurora congestion controller for Internet traffic [73]. We also extensively
evaluate our approach on Arithmetic DNNs, i.e., DNNs trained to approximate mathematical
operations (such as addition, multiplication, etc.).

Setup. For each of the four benchmarks, we initially trained multiple DNNs with identical
architectures, varying only the random seed employed in the training process. Subsequently,
we removed from this set all the DNNs but the ones that achieved high reward values (in the
DRL benchmarks) or high precision (in the supervised-learning benchmark) in-distribution,
in order to rule out the chance that a decision model exhibits poor generalization solely
because of inadequate training. Next, we specified out-of-distribution input domains of inter-
est for each specific benchmark and employed Alg. 2 to choose the models deemed most
likely to exhibit good generalization on those domains according to our framework. To deter-
mine the ground truth regarding the actual generalization performance of different models
in practice, we applied the models to inputs drawn from the considered OOD domain, and
ranked them based on empirical performance (average reward/maximal error, depending on
the benchmark). To assess the robustness of our results, we performed the last step with
different choices of probability distributions over the inputs in the domain.

Verification. All queries were dispatched usingMarabou [77, 165]—a sound and complete
DNN verification engine, which is capable of addressing queries regarding a DNN’s charac-
teristics by converting them into SMT-based constraint satisfaction problems. The Cartpole
benchmark included 48, 000 queries (24, 000 queries per each of the two platform sides), all
of which terminatedwithin 12 hours. TheMountain Car benchmark included 10, 080 queries,
all of which terminated within one hour. TheAurora benchmark included 24, 000 verification
queries, out of which all but 12 queries terminated within 12 hours; and the remaining ones
hit the time-out threshold. Finally, the Arithmetic DNNs benchmark included 2, 295 queries,
running with a time-out value of 24 hours; all queries terminated, with over 96% running in
less than an hour, and the longest non-DRL query taking slightly less than 13.8 hours. All
benchmarks ran on a single CPU, and with a memory limit of either 1 GB (for Arithmetic
DNNs) or 2 GB (for the DRL benchmarks). We note that in the case of the Arithmetic DNNs
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Fig. 3 Cartpole: in-distribution setting (blue) and OOD setting (red)

benchmark—Marabou internally used the Guorobi LP solver2 as a backend engine when
dealing with these queries.

Results. The findings support our claim that models chosen using our approach are expected
to significantly outperform other models for inputs drawn from the OOD domain consid-
ered. This is the case for all evaluated settings and benchmarks, regardless of the chosen
hyperparameters and filtering criteria. We note that although our approach can potentially
also remove some of the successful models, in all benchmarks, and across all evaluations, it
managed to remove all unsuccessful models. Next, we provide an overview of our evaluation.
A comprehensive exposition and additional details can be found in the appendices. Our code
and benchmarks are publicly available online [10].

4.1 Cartpole

Cartpole [58] is a widely known RL benchmark where an agent controls the motion of a cart
with an inverted pendulum (“pole”) affixed to its top. The cart traverses a platform, and the
objective of the agent is to maintain balance for the pole for as long as possible (see Fig. 3).

Agent and Environment. The agent is provided with inputs, denoted as s = (x, vx , θ, vθ ),
where x represents the cart’s position on the platform, θ represents the angle of the pole (with
|θ | approximately 0 for a balanced pole and |θ | approximately 90◦ for an unbalanced pole),
vx indicates the cart’s horizontal velocity, and vθ denotes the pole’s angular velocity.

In-Distribution Inputs. During the training process, the agent is encouraged to balance
the pole while remaining within the boundaries of the platform. In each iteration, the agent
produces a single output representing the cart’s acceleration (both sign and magnitude) for
the subsequent step. Throughout the training, we defined the platform’s limits as [−2.4, 2.4],
and the initial position of the cart as nearly static and close to the center of the platform (as
depicted on the left-hand side of Fig. 3). This was accomplished by uniformly sampling the
initial state vector values of the cart from the range [−0.05, 0.05].
(OOD) Input Domain. We examine an input domain with larger platforms compared to
those utilized during training. Specifically, we extend the range of the x coordinate in the
input vectors to cover [-10, 10]. The bounds for the other inputs remain the same as during
training. For additional details, see Appendices A and C.

Evaluation. We trained a total of k = 16 models, all of which demonstrated high rewards
during training on the short platform. Subsequently, we applied Alg. 2 until convergence
(requiring 7 iterations in our experiments) on the aforementioned input domain. This resulted
in a collection of 3models.We then subjected all 16 original models to inputs that were drawn
from the new, OOD domain. The generated distribution was crafted to represent a novel

2 https://www.gurobi.com.

123

https://www.gurobi.com


Verifying the Generalization of Deep Learning to Out-of-Distribution... Page 11 of 60    17 

Fig. 4 Cartpole: models’ average rewards in different distributions

Fig. 5 Cartpole: Alg. 2’s results, per iteration: the bars represent the ratio of good and bad models in the
surviving set (left y-axis), while the curve indicates the number of surviving models (right y-axis). Our
technique selected models {6,7,9}

scenario: the cart is now positioned at the center of a considerably longer, shifted platform
(see the red-colored cart depicted in Fig. 3).

All remaining parameters in the OOD environment matched those used for the original
training. Figure 4 presents the outcomes of evaluating the models on 20, 000 OOD instances.
Out of the initial 16 models, 11 achieved low to mediocre average rewards, demonstrating
their limited capacity to generalize to this new distribution. Only 5 models attained high
reward values on the OOD domain, including the 3 models identified by our approach; thus
indicating that our method successfully eliminated all 11 models that would have otherwise
exhibited poor performance in this OOD setting (see Fig. 5). For more information, we refer
the reader to Appendix E.
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Fig. 6 Mountain Car: figure a depicts the setting in which the agents were trained, and figure b depicts the
harder, OOD setting

4.2 Mountain Car

For our second experiment, we evaluated our method on the Mountain Car [128] benchmark,
in which an agent controls a car that needs to learn how to escape a valley and reach a target
(see Fig. 6).

Agent and Environment. The car (agent) is placed in a valley between two hills (at x ∈
[−1.2, 0.6]), and needs to reach a flag on top of one of the hills. The state, s = (x, vx )
represents the car’s location (along the x-axis) and velocity. The agent’s action (output) is
the applied force: a continuous value indicating the magnitude and direction in which the
agent wishes to move. During training, the agent is incentivized to reach the flag (placed at
the top of a valley, originally at x = 0.45). For each time-step until the flag is reached, the
agent receives a small, negative reward; if it reaches the flag, the agent is rewarded with a
large positive reward. An episode terminates when the flag is reached, or when the number
of steps exceeds some predefined value (300 in our experiments). Good and bad models are
distinguished by an average reward threshold of 90.

In-Distribution Inputs.During training (in-distribution), the car is initially placed on the left
side of the valley’s bottom,with a low, randomvelocity (see Fig. 6a).We trained k = 16 agents
(denoted as {1, 2, . . . 16}), which all performwell, i.e., achieve an average reward higher than
our threshold, in-distribution. This evaluation was conducted over 10, 000 episodes.

(OOD) InputDomain.According to the scenarios used by the training environment,we spec-
ified the (OOD) input domain by: (i) extending the x-axis, from [−1.2, 0.6] to [−2.4, 0.9];
(ii) moving the flag further to the right, from x = 0.45 to x = 0.9; and (iii) setting the car’s
initial location further to the right of the valley’s bottom, and with a large initial negative
velocity (to the left). An illustration appears in Fig. 6b. These new settings represent a novel
state distribution, which causes the agents to respond to states that they had not observed
during training: different locations, greater velocity, and different combinations of location
and velocity directions.

Evaluation. Out of the k = 16 models that performed well in-distribution, 4 models failed
(i.e., did not reach the flag, ending their episodes with a negative average reward) in the
OOD scenario, while the remaining 12 succeeded, i.e., reached a high average reward when
simulated on the OOD data (see Fig. 7). The large ratio of successful models is not surprising,
as Mountain Car is a relatively easy benchmark.
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Fig. 7 Mountain Car: the models’ average rewards in different distributions

To evaluate our algorithm, we ran it on thesemodels, and the aforementioned (OOD) input
domain, and checkedwhether it removed themodels that (although successful in-distribution)
fail in the new, harder, setting. Indeed, our method was able to filter out all unsuccessful
models, leaving only a subset of 5 models ({2, 4, 8, 10, 15}), all of which perform well in the
OOD scenario. For additional information, see Appendix F.

4.3 The Aurora Congestion Controller

In the third benchmark, we applied our methodology to an intricate system that enforces a
policy for the real-world task of Internet congestion control. Congestion control aims to deter-
mine, for each traffic source in a communication network, the appropriate rate at which data
packets should be dispatched into the network.Managing congestion is a notably challenging
and fundamental issue in computer networking [95, 110]; transmitting packets too quickly
can result in network congestion, causing data loss and delays. Conversely, employing low
sending rates may result in the underutilization of available network bandwidth. Developed
by [73], Aurora is a DNN-based congestion controller trained to optimize network perfor-
mance. Recent research has delved into formally verifying the reliability of DNN-based
systems, with Aurora serving as a key example [11, 46]. Within each time-step, an Aurora
agent collects network statistics and determines the packet transmission rate for the next
time-step. For example, if the agent observes poor network conditions (e.g., high packet
loss), we expect it to decrease the packet sending rate to better utilize the bandwidth. We
note that Aurora handles a much harder task than the previous RL benchmarks (Cartpole and
Mountain Car): congestion controllers must gracefully respond to diverse potential events,
interpreting nuanced signals presented byAurora’s inputs. Unlike in prior benchmarks, deter-
mining the optimal policy in this scenario is not a straightforward endeavor.

Agent and Environment.Aurora receives as input an ordered set of t vectors v1, . . . , vt , that
collectively represent observations from the previous t time-steps (each of the vectors vi ∈ R

3

includes three distinct values that represent statistics on the network’s condition, as detailed
in Appendix G). The agent has a single output indicating the change in the packet sending
rate over the following time-step. In line with [11, 46, 73], we set t = 10 time-steps, hence
making Aurora’s inputs of dimension 3t = 30. During training, Aurora’s reward function is
a linear combination of the data sender’s packet loss, latency, and throughput, as observed
by the agent (see [73] for more details).
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Fig. 8 Aurora: illustration of in-distribution and OOD settings

In-Distribution Inputs. During training, Aurora executes congestion control on basic net-
work scenarios—a single sender node sends traffic to a single receiver node across a single
network link. Aurora undergoes training across a range of options for the initial sending rate,
link bandwidth, link packet-loss rate, link latency, and the size of the link’s packet buffer.
During the training phase, data packets are initially sent by Aurora at a rate that corresponds
to 0.3 − 1.5 times the link’s bandwidth, leading mostly to low congestion, as depicted in
Fig. 8a.

(OOD) Input Domain. In our experiments, the input domain represented a link with a
limited packet buffer, indicating that the network can only store a small number of packets
(with most surplus traffic being discarded), resulting in the link displaying erratic behavior.
This is reflected in the initial sending rate being set to up to 8 times (!) the link’s bandwidth,
simulating the potential for a significant reduction in available bandwidth (for example, due
to competition, traffic shifts, etc.). For additional details, see Appendix G.

Evaluation.Weexecuted our algorithm and evaluated themodels by assessing their disagree-
ment upon this extensive domain, encompassing inputs that were not encountered during
training, and representing the aforementioned conditions (depicted in Fig. 8b).

Experiment (1): High Packet Loss. In this experiment, we trained more than 100 Aurora
agents in the original (in-distribution) environment. From this pool, we chose k = 16 agents
that attained a high average reward in the in-distribution setting (see Fig. 9a), as evaluated
over 40, 000 episodes from the same distribution on which the models were trained. Sub-
sequently, we assessed these agents using out-of-distribution inputs within the previously
outlined domain. The primary distinction between the training distribution and the new
(OOD) inputs lies in the potential occurrence of exceptionally high packet loss rates during
initialization.

Our assessment of out-of-distribution inputs within the domain reveals that while all
16 models excelled in the in-distribution setting, only 7 agents demonstrated the ability to
effectively handle such OOD inputs (see Fig. 9b). When Algorithm 2 was applied to the 16
models, it successfully identified and removed all 9models that exhibited poor generalization
on the out-of-distribution inputs (see Fig. 10). Additionally, it is worth mentioning that
during the initial iterations, the four models chosen for exclusion were {1, 2, 6, 13}—which
constitute the poorest-performing models on the OOD inputs (see Appendix G).

Experiment (2): Additional Distributions over OOD Inputs. To further demonstrate that
our method is apt to retain superior-performing models and eliminate inferior ones within the
given input domain, we conducted additional Aurora experiments by varying the distributions
(probability density functions) over the OOD inputs. Our assessment indicates that all models
filtered out by Algorithm 2 consistently exhibited low reward values also for these alternative
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Fig. 9 Aurora Experiment (1): the models’ average rewards when simulated on different distributions

Fig. 10 Aurora: Alg. 2’s results, per iteration. Our technique selected models {7,9,16}

distributions (see Fig. 30 and Fig. 31 in Appendix G). These results highlight an important
advantage of our approach: it applies to all inputs within the considered domain, and so it
applies to all distributions over these inputs. We note again that our model filtering process
is based on verification queries in which the imposed bounds can represent infinitely many
distribution functions, on these bounds. In other words, our method, if correct, should also
apply to additional OOD settings, beyond the ones we had originally considered, which share
the specified input range but may include a different probability density function (PDF) over
this range.

Additional Experiments.Weadditionally created a fresh set of Auroramodels bymodifying
the training process to incorporate substantially longer interactions (increasing from50 to 400
steps). Subsequently, we replicated the aforementioned experiments. The outcomes, detailed
in Appendix G, affirm that our approach once again effectively identified a subset of models
capable of generalizing well to distributions across the OOD input domain.

4.4 Arithmetic DNNs

In our last benchmark, we applied our approach to supervised-learning models, as opposed
to models trained via DRL. In supervised learning, the agents are trained using inputs that
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Fig. 11 A toy example of a DNN
that performs simple arithmetic.
The DNN receives a
d-dimensional input and learns to
output a single value which
constitutes the sum of the first
two inputs of the vector, while
ignoring the remaining (d-2)
inputs

have accompanying “ground truth” results, per data point. Specifically, we focused here on an
Arithmetic DNNs benchmark, in which the DL models are trained to receive an input vector,
and to approximate a simple arithmetic operation on some (or all) of the vector’s entries. We
note that this supervised-learning benchmark is considered quite challenging [101, 156].

Agent and Environment. We trained a DNN for the following supervised task. The input
is a vector of size 10 of real numbers, drawn uniformly at random from some range [l, u].
The output is a single scalar, representing the sum of two hidden (yet consistent across the
task) indices of the input vector; in our case, the first 2 input indices, as depicted in Fig. 11.
Differently put, the agent needs to learn to model the sum of the relevant (initially unknown)
indices, while learning to ignore the rest of the inputs. We trained our networks for 10 epochs
over a dataset consisting of 10, 000 input vectors drawn uniformly at random from the range
[l = −10, u = 10], using the Adam optimization algorithm [79] with a learning rate of
γ = 0.001 and using the mean squared error (MSE) loss function. For additional details, see
Appendix B.

In-Distribution Inputs.During training, we presented the models with input values sampled
from a multi-modal uniform distribution [−10,10]10, resulting in a single output in the range
[−20,20]. As expected, the models performed well over this distribution, as depicted in
Fig. 46a of the Appendix.

(OOD) Input Domain.Anatural OOD distribution includes any d-dimensional multi-modal
distribution, in which each input is drawn from a range different than [l = −10, u = 10]—
and hence, can necessarily be assigned values on which the model was not trained initially.
In our case, we chose the multi-modal distribution of [l = −1, 000, u = 1, 000]10. Unlike
the case for the in-distribution inputs, there was a high variance among the performance of
the models in this novel, unseen OOD setting, as depicted in Fig. 46b of the Appendix.

Evaluation. We originally trained n = 50 models. After validating that all models succeed
in-distribution, we generated a pool of k = 10 models. This pool was generated by collecting
the five best and five worst models OOD (based on their maximal normalized error, over the
same 100, 000 points sampled OOD). We then executed our algorithm and checked whether
it was able to identify and remove all unsuccessful models, which consisted of half of the
original model pool. Indeed, as can be seen in Fig. 12, all bad models were filtered out within
three iterations.After convergence, threemodels remained in themodel pool, includingmodel
{8}—which constitutes the best model, OOD. This experiment was successfully repeated
with additional filtering criteria (see Fig. 47 in Appendix H).
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Fig. 12 Arithmetic DNNs: Alg. 2’s results, per iteration. Our technique selected models {5,8,10}

4.5 Averaging the SelectedModels

To improve performance even further, it is possible to create (in polynomial time) an ensemble
of the surviving “good” models, instead of selecting a single model. As DNN robustness is
linked to uncertainty, and due to the use of ensembles as a prominent approach for uncertainty
prediction, it has been shown that averaging ensembles may improve performance [85].
For example, in the Arithmetic DNNs benchmark, our approach eventually selected three
models ({5}, {8}, and {9}, as depicted in Fig. 12). Subsequently, we generated an ensemble
comprised of these three DNNmodels. Now, when the ensemble evaluates a given input, that
input is first independently passed to each of the ensemble members; and the final ensemble
prediction is the average of each of the members’ original outputs. We then sampled 5, 000
inputs drawn in-distribution (see Fig. 13a) and 5, 000 inputs drawn OOD (see Fig. 13b),
and compared the average and maximal errors of the ensemble on these sampled inputs to
that of its constituents. In both cases, the ensemble had a maximal absolute error that was
significantly lower than each of its three constituent DNNs, as well as a lower average error
(with the sole exception of the average error OOD, which was the second-smallest error, by a
margin of only 0.06). Although the use of ensembles is not directly related to our approach,
it demonstrates how our technique can be extended and built upon additional robustness
techniques, for improving performance even further.

4.6 Analyzing the EliminatedModels

Weconducted an additional analysis of the eliminatedmodels, in order to compare the average
PDT scores of eliminated “good” models to those of eliminated “bad” ones. For each of the
five benchmarks, we divided the eliminated models into two separate clusters, of either
“good” or “bad” models (note that the latter necessarily includes all bad models, as in all our
benchmarks we return strictly “good” models). For each cluster, we calculated the average
PDT score for all the DNN pairs. The results, summarized in Table 1, demonstrate a clear
decrease in the average PDT score among the cluster of DNN pairs comprising successful
models, compared to their peers. This trend is observed across all benchmarks, resulting
in an average PDT score difference of between 21.2% to 63.2%, between the clusters, per
benchmark. We believe that these results further support our hypothesis that good models
tend to make similar decisions.
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Fig. 13 Arithmetic DNNs: Ensemble results. After Alg. 2 selected models {5}, {8}, and {9}, we generated
an ensemble {5, 8, 9} and sampled 5, 000 inputs in-distribution (a) and OOD (b). We note that we multiplied
the errors attained in the in-distribution experiment by 100 in order to normalize the selected range

5 Comparison to Gradient-BasedMethods & Additional Techniques

The methods presented in this paper build upon DNN verification (e.g., Line 4 in Alg. 1) in
order to solve the following optimization problem: given a pair of DNNs, an input domain,
and a distance function, what is the maximal distance between their outputs? In other words,
verification is rendered to find an input that maximizes the difference between the outputs
of two neural networks, under certain constraints. Although DNN verification requires sig-
nificant computational resources [75], nonetheless, we demonstrate that it is crucial in our
setting. To support this claim, we show the results of ourmethodwhen verification is replaced
with other, more scalable, techniques, such as gradient-based algorithms (“attacks”) [84, 98,
133]. In recent years, these optimization techniques have become popular due to their sim-
plicity and scalability, albeit the trade-off of inherent incompleteness and reduced precision
[13, 169]. As we demonstrate next, when using gradient-based methods (instead of verifi-
cation), at times, suboptimal PDT values were computed. This, in turn, resulted in retaining
unsuccessful models, which were successfully removed when using DNN verification.

5.1 Comparison to Gradient-BasedMethods

For our comparison, we generated three gradient attacks:

• Gradient attack # 1: a Non-Iterative Fast Gradient Sign Method (FGSM) [70] attack,
used when optimizing linear constraints, e.g., L1 norm, as in the case of Aurora and
Arithmetic DNNs;

• Gradient attack # 2: an Iterative PGD [100] attack, also used when optimizing linear
constraints. We note that we used this attack in cases where the previous attack failed.

• Gradient attack # 3: a Constrained Iterative PGD [100] attack, used in the case of
encoding non-linear constraints (e.g., c-distance functions; see Sect. 3), as in the case of
Cartpole andMountain Car. This attack is a modified version of popular gradient attacks,
that were altered in order for them to succeed in our setting.

Next, we formalize these attacks as constrained optimization problems.
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5.2 Formulation

Given an input domainD, an output spaceO = R, and a pair of neural networks N1 : D → R

and N2 : D → R, we wish to find an input x ∈ D that maximizes the difference between the
outputs of these neural networks.

Formally, in the case of the L1 norm, wewish to solve the following optimization problem:

max
x

|N1(x) − N2(x)|
s.t. x ∈ D

5.2.1 Gradient Attack # 1

In cases where only input constraints are present, a local maximum can be obtained via
conventional gradient attacks, that maximize the following objective function:

L(x) = |N1(x) − N2(x)|
by taking steps in the direction of its gradient, and projecting them into the domain D, that
is:

x0 ∈ D
xt+1 = [xt + ε · ∇xL(xt )]D

Where [·]D : Rn → D projects the result ontoD, and ε being the step size. We note that [·]D
may be non-trivial to implement, however for our cases, in which each input of the DNN
is encoded as some range, i.e., D ≡ {x | x ∈ R

n ∀i ∈ [n] : li ≤ xi ≤ ui }, this can be
implemented by clipping every coordinate to its appropriate range, and x0 can be obtained
by taking x0 = l+u

2 .
In our context, the gradient attacks maximize a loss function for a pair of DNNs, relative
to their input. The popular FGSM attack (gradient attack # 1) achieves this by moving in a
single step toward the direction of the gradient. This simple attack has been shown to be quite
efficient in causing misclassification [70]. In our setting, we can formalize this (projected)
FGSM as follows:

Algorithm 3 FGSM
Input: objective L , variables x, input domain D:(INIT, PROJECT), step size ε

Output: adversarial input x
1: x0 ← Init(D)

2: xadv ← Project(x0 + ε · sign(∇xL(x0)))
3: return xadv

In the context of our algorithms, we define D by two functions: INIT, which returns an
initial value from D; and PROJECT, which implements [·]D .

5.2.2 Gradient Attack # 2

Amore powerful extension of this attack is the PGD algorithm, which we refer to as gradient
attack # 2. This attack iterativelymoves in the direction of the gradient, often yielding superior
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Algorithm 4 PGD (maximize)
Input: objective L , variables x, input domain D:(INIT, PROJECT), iterations T , step size ε

Output: adversarial input x
1: x0 ← INIT(D)

2: for t = 0 . . . T − 1 do
3: xt+1 ← PROJECT(xt + ε · ∇xL(xt )) � sign(∇xL(xt )) may also be used
4: end for
5: return xT

results when compared to its single-step (FGSM) counterpart. The attack can be formalized
as follows:

We note that the case for using PGD in order to minimize the objective function is sym-
metric.

5.2.3 Gradient Attack # 3

In some cases, the gradient attack needs to optimize a loss function that represents constraints
on the outputs of theDNNpairs aswell. For example, in the case of theCartpole andMountain
Car benchmarks, we used the c-distance function. In this scenario, we may need to encode
constraints of the form:

N1(x) ≤ 0

N2(x) ≤ 0

resulting in the following constrained optimization problem:

max
x

|N1(x) − N2(x)|
s.t. x ∈ D

N1(x) ≤ 0
N2(x) ≤ 0

However, conventional gradient attacks are typically not geared for solving such opti-
mizations. Hence, we tailored an additional gradient attack (gradient attack # 3) that can
efficiently bridge this gap, and optimize the aforementioned constraints by combining our
Iterative PGD attack with Lagrange Multipliers [129] λ ≡ (λ(1), λ(2)), hence allowing to
penalize solutions for which the constraints do not hold. To this end, we introduce a novel
objective function:

L−(x,λ) = |N1(x) − N2(x)| − λ(1) · ReLU(N1(x)) − λ(2) · ReLU(N2(x))

resulting in the following optimization problem:

max
x

min
λ

L−(x,λ)

s.t. x ∈ D
λ(1) ≥ 0
λ(2) ≥ 0

Next, we implemented a Constrained Iterative PGD algorithm that approximates a solution
to this optimization problem:
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Algorithm 5 Constrained Iterative PGD
Input: objective L , input domain D, constraints: Ci (x), iterations: T , Tx , Tλ, step sizes: εx , ελ
Output: adversarial input x
x0 ← Init(D)

LC (x,λ) ≡ L(x) − ∑k
i=0 λ(i) · ReLU(Ci (x)) � the new objective

for t = 0 . . . T − 1 do
λt+1 ← PGD_min(LC ,λ, (λ ← 0,λ ≥ 0), Tλ, ελ) � minimize LC (xt , λ) with xt as constant
xt+1 ← PGD_max(LC , x,D, Tx , εx ) � maximize LC (x, λt ) with λt as constant

end for
return xT

5.3 Results

We ran our algorithm on all original DRL benchmarks, with the sole difference being the
replacement of the backend verification engine (Line 4 in Alg. 1) with the described gradient
attacks. The first two attacks (i.e., FGSM and Iterative PGD) were used for both Aurora
batches (“short” and “long” training), and the third attack (Constrained Iterative PGD) was
used in the case of Cartpole and Mountain Car, as for these benchmarks we required the
encoding of a distance functionwith constraints on theDNNs’ outputs as well.We note that in
the case of Aurora, we ran the Iterative PGD attack onlywhen theweaker attack failed (hence,
only on the models from Experiment (1)). Our results, summarized in Table 2, demonstrate
the advantages of using formal verification, compared to competing, gradient attacks. These
attacks, although scalable, resulted in various cases to suboptimal PDT values, and in turn,
retained unsuccessful models that were successfully removed when using verification. For
additional results, we also refer the reader to Figs. 14, 15, and 16.

5.4 Comparison to Sampling-BasedMethods

In yet another line of experiments, we again replaced the verification sub-procedure of our
technique, and calculated the PDT scores (Line 4 in Alg. 1) with sampling heuristics instead.
We note that, as any sampling technique is inherently incomplete, this can be used solely for
approximating the PDT scores.

In our experiment, we sampled 1, 000 inputs from the OOD domain, and fed them to all
DNN pairs, per each benchmark. Based on the outputs of the DNN pairs, we approximated
the PDT scores, and ran our algorithm in order to assess if scalable sampling techniques
can replace our verification-driven procedure. Our experiment raised two main concerns
regarding the use of sampling techniques instead of verification.

First, in many cases, sampling could not result in constrained outputs. For instance, in
the Mountain Car benchmark, we use the c-distance function (see Sect. 3.2), which requires
outputs withmultiple signs. However, even extensive sampling cannot guarantee this—over a
third (!) of allMountainCarDNNpairs had non-negative outputs, forall 1, 000OODsamples,
hence requiring approximation of the PDT scores even further, based only on partial outputs.
On the other hand, encoding the c-distance conditions in SMT is straightforward in our case,
and guarantees the required constraints.

The second setback of this approach is that, as in the case of gradient attacks, sampling
may result in suboptimal PDT scores, that skew the filtering process to retain unwanted
models. For example, in our results (summarized in Table 3), in both the Mountain Car and
Aurora (short-training) benchmarks the algorithm returned unsuccessful (“bad”) models in
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Fig. 14 Aurora: Gradient attack # 1 (single-step FGSM): Results of models filtered using PDT scores approx-
imated by gradient attacks (instead of a verification engine) on short-trained Aurora models, using the MAX
criterion (and terminating in advance if the disagreement scores are no larger than 2). In contrast to our
verification-driven approach, the final result contains a bad model. Compare to Fig. 34

Fig. 15 Aurora: Gradient attack # 2 (Iterative PGD): Results ofmodels filtered usingPDT scores approximated
by gradient attacks (instead of a verification engine) on short-trained Aurora models, using the MAX criterion
(and terminating in advance if the disagreement scores are no larger than 2). In contrast to our verification-
driven approach, the final result contains a bad model. Compare to Fig. 34

some cases, while these models are effectively removed when using verification. We believe
that these results further motivate the use of verification, instead of applying more scalable
and simpler methods.

5.5 Comparison to Predictive Uncertainty Methods

In yet another experiment, we evaluated whether our verification-driven approach can be
replaced with predictive uncertainty methods [1, 115]. These methods are online techniques,
that assess uncertainty, i.e., discern whether an encountered input aligns with the training
distribution. Among these techniques, ensembles [39, 52, 82] are a popular approach for
predicting the uncertainty of a given input, by comparing the variance among the ensemble
members; intuitively, the higher the variance is for a given input, the more “uncertain” the
models are with regard to the desired output. We note that in Sect. 4.5 we demonstrate that
after using our verification-driven approach, ensembling the resulting models may improve
the overall performance relative to each individual member. However, now we set to explore
whether ensembles can not only extend our verification-driven approach, but also replace
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Fig. 16 Cartpole: Gradient attack # 3 (Constrained Iterative PGD): Results of models filtered using PDT
scores approximated by gradient attacks (instead of a verification engine) on the Cartpole models. Each row,
from top to bottom, contains results using a different filtering criterion (and terminating in advance if the
disagreement scores are no larger than 2): PERCENTILE (compare to Figs. 5 and 20), MAX (compare to
Fig. 21), and COMBINED (compare to Fig. 22). In all cases, the algorithm returned at least one bad model
(and usually more than one), resulting in models with lower average rewards than the models returned with
our verification-based approach

it completely. As we demonstrate next, ensembles, like gradient attacks and sampling tech-
niques, are not a reliable replacement for verification in our setting. For example, in the
case of Cartpole, we generated all possible k-sized ensembles (we chose k = 3 as this was
the number of selected models via our verification-driven approach, see Fig. 5), resulting in(n
k

) = (16
3

) = 560 ensemble combinations. Next, we randomly sampled 10, 000 OOD inputs
(based on the specification in Appendix C) and utilized a variance-based metric (inspired
by [94]) to identify ensemble subsets exhibiting low output variance on these OOD-sampled
inputs. However, even the subset represented by the ensemble with the lowest variance,
included the “bad” model {8} (see Fig. 4), which was successfully removed in our equiv-
alent verification-driven technique. We believe that this too demonstrates the merits of our
verification-driven approach.
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Table 3 A summary of Alg. 2’s results, per each of the five benchmarks: Cartpole, Mountain Car, Aurora
(short & long training), and Arithmetic DNNs

BENCHMARK CRITERION SURVIVING MODELS

Cartpole MAX {7}

PERCENTILE {6,7,9}

COMBINED {7,9}

Mountain Car MAX {1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 13, 16}

PERCENTILE {1, 5, 8}

COMBINED {1, 5, 6, 8, 9, 10, 13}

Aurora (short) MAX {7, 9, 11, 16}

PERCENTILE {7, 15, 16}

COMBINED {7, 16}

Aurora (long) MAX {20, 22, 27, 28}

PERCENTILE {20, 27, 28}

COMBINED {20, 22, 27, 28}

Arithmetic DNNs MAX {1,5,6,8,10}

PERCENTILE {6, 8, 10}

COMBINED {1,5,6,8,10}

For each benchmark, we sampled 1, 000 OOD inputs, and approximated the PDT scores, based on which we
ran Alg. 2. The columns, from left to right, indicate the benchmark, the filtering criterion, and the surviving
models, with the unsuccessful models in Bold italic. We note that for cases in which the c-condition was used
and could not be approximated on both signs, we approximated it based on the partial results, as afforded by
the sampling technique

6 RelatedWork

Due to its widespread occurrence, the phenomenon of adversarial inputs has gained con-
siderable attention [48, 60, 109, 117, 118, 150, 179]. Specifically, The machine learning
community has dedicated substantial effort to measure and enhance the robustness of DNNs
[32, 34, 53, 66, 91, 100, 125, 139, 140, 164, 173]. The formal methods community has also
been looking into the problem, by devising methods for DNN verification, i.e., techniques
that can automatically and formally guarantee the correctness of DNNs [3, 17, 36, 37, 40–42,
51, 57, 59, 62, 63, 71, 72, 76, 80, 97, 104, 111, 120, 132, 138, 143, 144, 147, 152, 157, 158,
160, 166, 170, 171, 177]. These techniques include SMT-based approaches (e.g., [69, 75, 77,
83]) as used in this work, methods based on MILP and LP solvers (e.g., [28, 43, 93, 151]),
methods based on abstract interpretation or symbolic interval propagation (e.g., [55, 154,
162, 163]), as well as abstraction-refinement (e.g., [14, 15, 45, 114, 121, 143, 174]), size
reduction [122], quantitative verification [20], synthesis [3], monitoring [96], optimization
[16, 146], and also tools for verifying recurrent neural networks (RNNs) [72, 177].

In addition, efforts have been undertaken to offer verificationwith provable guarantees [71,
132], verification of DNN fairness [157], and DNN repair and modification after deployment
[40, 59, 144, 158, 171].

We also note that some sound and incomplete techniques [24, 152] have put forth an alter-
native strategy for DNN verification, via convex relaxations. These techniques are relatively
fast, and can also be applied by our approach, which is generally agnostic to the underlying
DNNverifier. In the specific case ofDRL-based systems, various non-verification approaches
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have been put forth to increase the reliability of such systems [2, 54, 127, 161, 178]. These
techniques rely mostly on Lagrangian Multipliers [90, 131, 145].

In addition toDNNverification techniques, another approach that guarantees safe behavior
is shielding [6, 25], i.e., incorporating an external component (a “shield”) that enforces the
safe behavior of the agent, according to a given specification on the input/output relation of
the DNN in question.

Classic shielding approaches [6, 25, 123, 124, 168] focus on simple properties that can
be expressed in Boolean LTL formulas. However, proposals for reactive synthesis methods
within infinite theories have also emerged recently [31, 50, 99]. Yet another relevant approach
is Runtime Enforcement [47, 89, 136], which is akin to shielding but incompatible with
reactive systems [25].

In a broader sense, these aforementioned techniques can be viewed as part of ongoing
research on improving the safety of Cyber-Physical Systems (CPS) [64, 92, 119, 135, 155].

Variability among machine learning models has been widely employed to enhance perfor-
mance, often through the use of ensembles [39, 52, 82]. However, only a limited number of
methodologies utilize ensembles to tackle generalization concerns [112, 113, 130, 172]. In
this context, we note that our approach can also be used for additional tasks, such as ensemble
selection [13], as it can identify subsets of models that have a high variance in their outputs.
Furthermore, alternative techniques beyond verification for assessing generalization involve
evaluating models across predefined new distributions [116].

In the context of learning, there is ample research on identifying andmitigating data drifts,
i.e., changes in the distribution of inputs that are fed to theMLmodel, during deployment [18,
49, 56, 78, 102, 134]. In addition, certain studies employ verification for novelty detection
with respect to DNNs concerning a single distribution [67]. Other work focused on applying
verification to evaluate the performance of a model relative to fixed distributions [19, 167],
while non-verification approaches, such as ensembles [112, 113, 130, 172], runtime monitor-
ing [67], and other techniques [116], have been applied for OOD input detection. Unlike the
aforementioned approaches, our objective is to establish verification-guided generalization
scores that encompass an input domain, spanning multiple distributions within this domain.
Furthermore, as far as we are aware, our approach represents the first endeavor to harness
the diversity among models to distill a subset with enhanced generalization capabilities.
Particularly, it is also the first endeavor to apply formal verification for this goal.

7 Limitations

Although our evaluation results indicate that our approach is applicable to varied settings
and problem domains, it may suffer from multiple limitations. First, by design, our approach
assumes a single solution to a given generalization problem. This does not allow select-
ing DNNs with different generalization strategies to the same problem. We also note that
although our approach builds upon verification techniques, it cannot assure correctness or
generalization guarantees of the selected models (although, in practice, this can happen in
various scenarios—as our evaluation demonstrates).

In addition, our approach relies on the underlying assumption that the range of inputs is
known apriori. In some situations, this assumption may turn out to be highly non-trivial—for
example, in cases where the DNN’s inputs are themselves produced by another DNN, or
some other embedding mechanism. Furthermore, even when the range of inputs is known,
bounding their exact values may require domain-specific knowledge for encoding various
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distance functions, and the metrics that build upon them (e.g., PDT scores). For example,
in the case of Aurora, routing expertise is required in order to translate various Internet
congestion levels to actual bounds on Aurora’s input variables. We note that such knowledge
may be highly non-trivial in various domains.

Finally,we note that other limitations stem from the use of the underlyingDNNverification
technology, which may serve as a computational bottleneck. Specifically, while our approach
requires dispatching a polynomial number of DNN verification queries, solving each of these
queries is NP-complete [76]. In addition, the underlyingDNNverifier itself may limit the type
of encodings it affords, which, in turn, restricts various use-cases to which our approach can
be applied. For example, sound and complete DNN verification engines are currently suitable
solely for DNNs encompassing piecewise-linear activations. However, as DNN verification
technology improves, so will our approach.

8 Conclusion

This case study presents a novel, verification-driven approach to identify DNN models that
effectively generalize to an input domain of interest. We introduced an iterative scheme that
utilizes a backend DNN verifier, enabling us to assess models by scoring their capacity to
generate similar outputs for multiple distributions over a specified domain. We extensively
evaluated our approach on multiple benchmarks of both supervised, and unsupervised learn-
ing, and demonstrated that, indeed, it is able to effectively distill models capable of successful
generalization capabilities. AsDNNverification technology advances, our approachwill gain
scalability and broaden its applicability to a more diverse range of DNNs.

Appendices

A DRL Benchmarks: Training and Evaluation

In this appendix, we elaborate on the hyperparameters and the training procedure, for repro-
ducing allmodels and environments of all threeDRLbenchmarks.We also provide a thorough
overview of various implementation details. The code is based on the Stable-Baselines 3
[126] and OpenAI Gym [27] packages. Unless stated otherwise, the values of the various
parameters used during training and evaluation are the default values (per training algorithm,
environment, etc.).

A.1 Training Algorithm

We trained our models with Actor-Critic algorithms. These are state-of-the-art RL training
algorithms that iteratively optimize two neural networks:

• a critic network, that learns a value function [107] (also known as a Q-function), that
assigns a value to each 〈state,action〉 pair; and

• an actor network, which is the DRL-based agent trained by the algorithm. This network
iteratively maximizes the value function learned by the critic, thus improving the learned
policy.
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Table 4 DNN architectures and training algorithms, per benchmark

Benchmark Hidden layers Layer size Activation function Training algorithm

Cartpole 2 [32, 16] ReLU PPO

Mountain Car 2 [64, 16] ReLU SAC

Aurora 2 [32, 16] ReLU PPO

Specifically, we used two implementations of Actor-Critic algorithms: Proximal Policy
Optimization (PPO) [137] and Soft Actor-Critic (SAC) [65].

Actor-Critic algorithms are considered very advantageous, due to their typical requirement
of relatively few samples to learn from, and also due to their ability to allow the agent to
learn policies for continuous spaces of 〈state,action〉 pairs.

In each training process, all models were trained using the same hyperparameters, with
the exception of the Pseudo Random Number Generator’s (PRNG) seed. Each training phase
consisted of 10 checkpoints, while each checkpoint included a constant number of environ-
ment steps, as described below. For model evaluation, we used the last checkpoint of each
training process (per benchmark).

A.2 Architecture

In all benchmarks, we used DNNs with a feed-forward architecture. We refer the reader to
Table 4 for a summary of the chosen architecture per each benchmark.

A.3 Cartpole Parameters

A.3.1 Architecture and Training

1. Architecture

• hidden layers: 2
• size of hidden layers: 32 and 16, respectively
• activation function: ReLU

2. Training

• algorithm: Proximal Policy Optimization (PPO)
• gamma (γ ): 0.95
• batch size: 128
• number of checkpoints: 10
• total time-steps (number of training steps for each checkpoint): 50, 000
• PRNG seeds (each one used to train a different model):

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}
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Fig. 17 Cartpole: models’ exponential weighted moving average (EWMA) reward during training. All models
achieved a high reward (at the end of their training phase)

A.3.2 Environment

We used the configurable CartPoleContinuous-v0 environment. Given lower and upper
bounds for the x-axis location, denoted as [low, high], and mid = high+low

2 , the initial
x position is randomly, uniformly drawn from the interval [mid − 0.05,mid + 0.05].

An episode is a sequence of interactions between the agent and the environment, such that
the episode ends when a terminal state is reached. In the Cartpole environment, an episode
terminates after the first of the following occurs:

1. The cart’s location exceeds the platform’s boundaries (as expressed via the x-axis loca-
tion); or

2. The cart was unable to balance the pole, which fell (as expressed via the θ -value); or
3. 500 time-steps have passed.

A.3.3 Domains

1. (Training) In-Distribution

• action min magnitude: True
• x-axis lower bound (x_threshold_low): −2.4
• x-axis upper bound (x_threshold_high): 2.4

2. (OOD) Input Domain Two symmetric OOD scenarios were evaluated: the cart’s x posi-
tion represented significantly extended platforms in a single direction, hence, including
areas previously unseen during training. Specifically, we generated a domain of input
points characterized by x-axis boundaries that were selected, with an equal probabil-
ity, either from [−10,−2.4] or from [2.4, 10] (instead of the in-distribution range of
[−2.4, 2.4]). The cart’s initial location was uniformly drawn from the range’s center
±0.05: [−6.4− 0.05,−6.4+ 0.05] and [6.4− 0.05, 6.4+ 0.05], respectively. All other
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parameters were the same as the ones used in-distribution.
OOD scenario 1

• x-axis lower bound (x_threshold_low): −10.0
• x-axis upper bound (x_threshold_high): −2.4

OOD scenario 2

• x-axis lower bound (x_threshold_low): 2.4
• x-axis upper bound (x_threshold_high): 10.0

A.4 Mountain Car Parameters

A.4.1 Architecture and Training

1. Architecture

• hidden layers: 2
• size of hidden layers: 64 and 16, respectively
• activation function: ReLU
• clip mean parameter: 5.0
• log stdinit parameter: −3.6

2. Training

• algorithm: Soft Actor-Critic (SAC)
• gamma (γ ): 0.9999
• batch size: 512
• buffer size: 50,000
• gradient steps: 32
• learning rate: 1 × 10−3

• learning starts: 0
• tau (τ ): 0.01
• train freq: 32
• use sde: True
• number of checkpoints: 10
• total time-steps (number of training steps for each checkpoint): 5, 000
• PRNG seeds (each one used to train a different model):

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}

A.4.2 Environment

We used the MountainCarContinuous-v1 environment.

A.4.3 Domains

1. (Training) In-Distribution

• min position: −1.2
• max position: −0.6
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Fig. 18 Mountain Car: models’ exponential weighted moving average (EWMA) reward during training. All
models achieved a high reward (at the end of their training phase)

• goal position: 0.45
• min action (if the agent’s action is negative and under this value, this value is used):

−2
• max action (if the agent’s action is positive and above this value, this value is used):

2
• max speed: 0.4
• initial location range (from which the initial location is uniformly drawn):

[−0.9,−0.6]
• initial velocity range (fromwhich the initial velocity is uniformly drawn): [0, 0] (i.e.,

the initial velocity in this scenario is always 0)
• x scale factor (used for scaling the x-axis): 1.5

2. (OOD) Input Domain The inputs are the same as the ones used in-distribution, except
for the following:

• min position: −2.4
• max position: 1.2
• goal position: 0.9
• initial location range: [0.4, 0.5]
• initial location velocity: [−0.4,−0.3]

A.5 Aurora Parameters

A.5.1 Architecture and Training

1. Architecture

• hidden layers: 2
• size of hidden layers: 32 and 16, respectively
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Fig. 19 Aurora (short training): models’ exponential weighted moving average (EWMA) reward during train-
ing. All models achieved a high reward (at the end of their training phase)

• activation function: ReLU

2. Training

• algorithm: Proximal Policy Optimization (PPO)
• gamma (γ ): 0.99
• number of steps to run for each environment, per update (n_steps): 8, 192
• number of epochs when optimizing the surrogate loss (n_epochs): 4
• learning rate: 1 × 10−3

• value function loss coefficient (vf_coef): 1
• entropy function loss coefficient (ent_coef): 1 × 10−2

• number of checkpoints: 6
• total time-steps (number of training steps for each checkpoint): 656, 000 (as used in

the original paper [73])
• PRNG seeds (each one used to train a different model):

{4, 52, 105, 666, 850, 854, 857, 858, 885, 897, 901, 906, 907, 929, 944, 945}
We note that for simplicity, these were mapped to indices {1 . . . 16}, accordingly
(e.g., {4} → {1}, {52} → {2}, etc.).

A.5.2 Environment

We used a configurable version of the PccNs-v0 environment. For models in Exp. (1) (with
the short training), each episode consisted of 50 steps. For models in Exp. (3) (with the long
training), each episode consisted of 400 steps.

A.5.3 Domains

1. (Training) In-Distribution
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Table 5 Arithmetic DNNs: benchmark parameters

Benchmark Hidden layers Layer size Activation function Training algorithm

Arithmetic DNNs 3 [10, 10, 10] ReLU Adam

• minimal initial sending rate ratio (to the link’s bandwidth) (min_initial_send_rate_bw
_ratio): 0.3

• maximal initial sending rate ratio (to the link’s bandwidth) (max_initial_send_rate_bw
_ratio): 1.5

2. (OOD) Input Domain To bound the latency gradient and latency ratio elements of the
input, we used a shallow buffer setup, with a bounding parameter δ > 0 such that latency
gradient ∈ [−δ, δ] and latency ratio ∈ [1.0, 1.0 + δ].
• minimal initial sending rate ratio (to the link’s bandwidth) (min_initial_send_rate_bw

_ratio): 2.0
• maximal initial sending rate ratio (to the link’s bandwidth) (max_initial_send_rate_bw

_ratio): 8.0
• use shallow buffer: True
• shallow buffer δ bound parameter: 1 × 10−2

B Arithmetic DNNs: Training and Evaluation

In this appendix, we elaborate on the hyperparameters and the training procedure, for repro-
ducing all models and environments of the supervised learningArithmetic DNNs benchmark.
We also provide a thorough overview of various implementation details.
To train our neural networks we used the pyTorch package, version 2.0.1. Unless stated
otherwise, the values of the various parameters used during training and evaluation are the
default values (per training algorithm, environment, etc.).

B.1 Training Algorithm

We trained our models with the Adam optimizer [79], for 10 epochs, and with a batch size
of 32. All models were trained using the same hyperparameters, with the exception of the
Pseudo Random Number Generator’s (PRNG) seed.

B.2 Architecture

In all benchmarks, we used DNNs with a fully connected feed-forward architecture with
ReLU activations.

B.3 Arithmetic DNNs Parameters

B.3.1 Architecture and Training

1. Architecture
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• hidden layers: 3
• size of (each) hidden layer: 10
• activation function: ReLU

2. Training

• algorithm: Adam [79]
• learning rate: γ = 0.001
• batch size: 32
• PRNG seeds (each one used to train a different model): [0, 49]. The 5 models with

the best seeds OOD are (from best to worse): {37, 4, 22, 20, 47}, and the 5 models
with the worst seeds OOD are (from best to worse): {15, 12, 11, 44, 30}. We note
that for simplicity, these were mapped to indices {1 . . . 10}, based on their order (e.g.,
{4} → {1}, {11} → {2}, etc.).

• loss function: mean squared error (MSE)

B.3.2 Domains

1. (Training) In-DistributionWe have generated a dataset of 10, 000 vectors of dimension
d = 10, in which every entry is sampled from the multi-modal uniform distribution
[l = −10, u = 10]10. Hence, x1, x2, . . . , x10000 ∼ [−10, 10]10. and the output label is
yi = xi [0] + xi [1]. The random seed used for generating the dataset is 0.

2. (OOD) InputDomainWeevaluated our networks on100, 000 input vectors of dimension
d = 10, where every entry is uniformly distributed between [l = −1, 000, u = 1, 000].
All other parameters were identical to the ones used in-distribution.

C Verification Queries: Additional Details

C.1 Precondition

In our experiments, we used the following bounds for the (OOD) input domain:

1. Cartpole:

• x position: x ∈ [−10,−2.4] or x ∈ [2.4, 10] The PDT was set to be the maximum
PDT score of each of these two scenarios.

• x velocity: vx ∈ [−2.18, 2.66]
• angle: θ ∈ [−0.23, 0.23]
• angular velocity: vθ ∈ [−1.3, 1.22]

2. Mountain Car:

• x position: x ∈ [−2.4, 0.9]
• x velocity: vx ∈ [−0.4, 0.134]

3. Aurora:

• latency gradient: xt ∈ [−0.007, 0.007], for all t s.t. (t mod 3) = 0
• latency ratio: xt ∈ [1, 1.04], for all t s.t. (t mod 3) = 1
• sending ratio: xt ∈ [0.7, 8], for all t s.t. (t mod 3) = 2
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4. Arithmetic DNNs:

• for all 0 ≤ i ≤ 9: xi ∈ [−1000, 1000]

C.2 Postcondition

As elaborated in subsection 3.2, we encode an appropriate distance function on the DNNs’
outputs.
Note. In the case of the c-distance function, we chose, for Cartpole and Mountain Car,
c := N1(x) ≥ 0 ∧ N2(x) ≥ 0 and c′:=N1(x) ≤ 0 ∧ N2(x) ≤ 0. This distance function
is tailored to find the maximal difference between the outputs (actions) of two models, in
a given category of inputs (non-positive or non-negative, in our case). The intuition behind
this function is that in some benchmarks, good and bad models may differ in the sign (rather
than only the magnitude) of their actions. For example, consider a scenario of the Cartpole
benchmark where the cart is located on the “edge” of the platform: an action in one direction
(off the platform) will cause the episode to end, while an action in the other direction will
allow the agent to increase its reward by continuing the episode, and possibly reaching the
goal.

C.3 Verification Engine

All querieswere dispatched toMarabou [77, 165]—a sound and complete verification engine,
previously used in other DNN-verification-related work [7, 8, 11–13, 22, 23, 29, 33, 38, 44,
45, 72, 114, 143, 162, 169].

D Algorithm Variations and Hyperparameters

In this appendix, we elaborate on our algorithms’ additional hyperparameters and filtering
criteria, used throughout our evaluation. As the results demonstrate, our method is highly
robust in a myriad of settings.

D.1 Precision

For each benchmark and each experiment, we arbitrarily selected kmodels which reached our
reward threshold for the in-distribution data. Then, we used these models for our empirical
evaluation. The PDT scores were calculated up to a finite precision of 0.5 ≤ ε ≤ 20,
depending on the benchmark (0.5 for Mountain Car, 1 for Cartpole and Aurora, and 20 for
Arithmetic DNNs).

D.2 Filtering Criteria

As elaborated in Sect. 3, our algorithm iteratively filters out (Line 9 in Alg. 2) models with
a relatively high disagreement score, i.e., models that may disagree with their peers in the
input domain. We present three different criteria based on which we may select the models
to remove in a given iteration, after sorting the models based on their DS score:
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Fig. 20 Cartpole: model selection results: minimum, median, and maximum rewards of the models selected
after each iteration. Our technique selected models {6,7,9}

1. PERCENTILE: in which we remove the topp% of models with the highest disagreement
scores, for a predefined value p. In our experiments, we chose p = 25%.

2. MAX: in which we:

(a) sort the DS scores of all models in a descending order;
(b) calculate the difference between every two adjacent scores;
(c) search for the greatest difference of any two subsequent DS scores;
(d) for this difference, use the larger DS as a threshold; and
(e) remove all models with a DS that is greater than or equal to this threshold.

3. COMBINED: inwhichwe removemodels based either onMAX or PERCENTILE, depend-
ing on which criterion eliminates more models in a specific iteration.

E Cartpole: Supplementary Results

Throughout our evaluation of this benchmark, we use a threshold of 250 to distinguish
between good and bad models—this threshold value induces a large margin from rewards
pertaining to poorly-performing models (which usually reached rewards lower than 100).

Note that as seen in Fig. 5, our algorithm eventually also removes some of the more
successful models. However, the final result contains only well-performing models, as in the
other benchmarks.
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E.1 Result per Filtering Criteria

Fig. 21 Cartpole: results using the MAX filtering criterion. Our technique selected models {7, 9}

Fig. 22 Cartpole: results using the COMBINED filtering criterion. Our technique selected models {7, 9}

123



Verifying the Generalization of Deep Learning to Out-of-Distribution... Page 39 of 60    17 

F Mountain Car: Supplementary Results

F.1 TheMountain Car Benchmark

We note that our algorithm is robust to various hyperparameter choices, as demonstrated in
Figs. 23, 24 and 25 which depict the results of each iteration of our algorithm, when applied
with different filtering criteria (elaborated in Appendix D).

Fig. 23 Mountain Car: results using the PERCENTILE filtering criterion. Our technique selected models {8,
10, 15}

F.2 Additional Filtering Criteria

Fig. 24 Mountain Car: results using the MAX filtering criterion. Our technique selected models {2, 4, 15}
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Fig. 25 Mountain Car: results using the COMBINED filtering criterion. Our technique selected models {2, 4,
15}

Fig. 26 Mountain Car: our algorithm effectively increases the probability to choose a good model, due to
effective filtering. The plot corresponds to Table 7

F.3 Combinatorial Experiments

Due to the original bias of the initial set of candidates, inwhich 12 out of the original 16models
are good in the OOD setting, we set out to validate that the fact that our algorithm succeeded
in returning solely good models is indeed due to its correctness, and not due to the inner bias
among the set of models, to contain good models. In our experiments (summarized below)
we artificially generated new sets of models in which the ratio of good models is deliberately
lower than in the original set. We then reran our algorithm on all possible combinations
of the initial subsets, and calculated (for each subset) the probability of selecting a good
model in this new setting, from the models surviving our filtering process. As we show,
our method significantly improves the chances of selecting a good model even when these
are a minority in the original set. For example, the leftmost column of Fig. 26 shows that
over sets consisting of 4 bad models and only 2 good ones, the probability of selecting a
good model after running our algorithm is over 60% (!)—almost double the probability of
randomly selecting a good model from the original set before running our algorithm. These
results were consistent across multiple subset sizes, and with various filtering criteria.
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Note. For the calculations demonstrating the chance to select a good model, we assume
random selection from a subset of models: before applying our algorithm, the subset is the
original set of models; and after our algorithm is applied—the subset is updated based on
the result of our filtering procedure. The probability is computed based on the number of
combinations of bad models surviving the filtering process, and their ratio relative to all the
models returned in those cases (we assume uniform probability, per subset).

G Aurora: Supplementary Results

G.1 Additional Information

1. A detailed explanation of Aurora’s input statistics:

(i) LatencyGradient: a derivative of latency (packet delays) over the recentMI (“monitor
interval”);

(ii) Latency Ratio: the ratio between the average latency in the currentMI to theminimum
latency previously observed; and

(iii) SendingRatio: the ratio between the number of packets sent to the number of acknowl-
edged packets over the recent MI.

As mentioned, these metrics indicate the link’s congestion level.
2. For all our experiments on this benchmark, we defined “good” models as models that

achieved an average reward greater/equal to a threshold of 99; “bad” models are models
that achieved a reward lower than this threshold.

3. In-distribution, the average reward is not necessarily correlated with the average reward
OOD. For example, in Exp. (1) with the short episodes during training (see Fig. 9):

(a) In-distribution, model {4} achieved a lower reward than models {2} and {5}, but a
higher reward OOD.

(b) In-distribution, model {16} achieved a lower reward than model {15}, but a higher
reward OOD.

Experiment (3): Aurora: Long Training Episodes Similar to Experiment (1), we trained a
new set of k = 16 agents. In this experiment, we increased each training episode to consist of

Fig. 27 Aurora Experiment (3): the models’ average rewards when simulated on different distributions
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Fig. 28 Aurora Experiment (3): model selection results. Our technique selected models {20, 27, 28}

400 steps (instead of 50, as in the “short” training). The remaining parameters were identical
to the previous setup in Experiment (1). This time, 5 models performed poorly in the OOD
environment (i.e., did not reach our reward threshold of 99), while the remaining 11 models
performed well both in-distribution and OOD.

When running our method with the MAX criterion, our algorithm returned 4 models, all
being a subset of the group of 11 models which generalized successfully, and after fully
filtering out all the unsuccessful models. Running the algorithm with the PERCENTILE or
the COMBINED criteria also yielded a subset of this group, indicating that the filtering process
was again successful (and robust to various algorithm hyperparameters).

G.2 Additional Probability Density Functions

Following are the results discussed in Sect. 4.3. To further demonstrate our method’s robust-
ness to different types of out-of-distribution inputs, we applied it not only to different values
(e.g., high Sending Rate values) but also to various probability density functions (PDFs) of
values in the (OOD) input domain in question.More specifically, we repeated theOODexper-
iments (Experiment (1) and Experiment (3)) with different PDFs. In their original settings,
all of the environment’s parameters (link’s bandwidth, latency, etc.) are uniformly drawn
from a range [low, high]. However, in this experiment, we generated two additional PDFs:
Truncated normal (denoted as T N [low,high](μ, σ 2)) distributions that are truncated within
the range [low, high]. The first PDF was used with μlow = 0.3 ∗ high + (1 − 0.3) ∗ low,
and the other with μhigh = 0.8 ∗ high + (1 − 0.8) ∗ low. For both PDFs, the variance (σ 2)
was arbitrarily set to high−low

4 . These new distributions are depicted in Fig. 29 and were used
to test the models from both batches of Aurora experiments (Experiments (1) and (3)).
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Fig. 29 Aurora: the models’ average rewards under different PDFs. Top row: results for the models used in
Experiment (1). Bottom row: results for the models used in Experiment (3)

Fig. 30 Aurora: Additional PDFs: model selection results for OOD values; the models are the same as in
Experiment (1)

Fig. 31 Aurora: Additional PDFs: model selection results: rewards statistics per iteration; the models are the
same as in Experiment (1)
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Fig. 32 Aurora: Additional PDFs: model selection results for OOD values; the models are the same as in
Experiment (3)

Fig. 33 Aurora: Additional PDFs: model selection results: rewards statistics per iteration; the models are the
same as in Experiment (3)
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G.3 Additional Filtering Criteria: Experiment (1)

Fig. 34 Aurora Experiment (1): results using the MAX filtering criterion. Our technique selectedmodels {7,16}

Fig. 35 Aurora Experiment (1): results using the COMBINED filtering criterion. Our technique selectedmodels
{7,16}

G.4 Additional Filtering Criteria: Experiment (3)

Fig. 36 Aurora Experiment (3): results using the MAX filtering criterion. Our technique selected models {20,
22, 27, 28}
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Fig. 37 Aurora Experiment (3): results using the COMBINED filtering criterion. Our technique selectedmodels
{20, 27, 28}

G.5 Additional Filtering Criteria: Additional PDFs

Fig. 38 Aurora Experiment (1): PDF ∼ T N (μlow, σ 2): results using the MAX filtering criterion

Fig. 39 Aurora Experiment (1): PDF ∼ T N (μlow, σ 2): results using the COMBINED filtering criterion
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Fig. 40 Aurora Experiment (1): PDF ∼ T N (μhigh , σ 2): results using the MAX filtering criterion

Fig. 41 Aurora Experiment (1): PDF ∼ T N (μhigh , σ 2): results using the COMBINED filtering criterion

Fig. 42 Aurora Experiment (3):, PDF ∼ T N (μlow, σ 2): results using the MAX filtering criterion
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Fig. 43 Aurora Experiment (3): PDF ∼ T N (μlow, σ 2): results using the COMBINED filtering criterion

Fig. 44 Aurora Experiment (3): PDF ∼ T N (μhigh , σ 2): results using the MAX filtering criterion

Fig. 45 Aurora Experiment (3): PDF ∼ T N (μhigh , σ 2): results using the COMBINED filtering criterion
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H Arithmetic DNNs: Supplementary Results

Fig. 46 Arithmetic DNNs: the models’ maximal absolute error (MAE) when simulated on different distribu-
tions. The in-distribution results are normalized relative to the OOD range (i.e., multiplied by 100) and divided
by the maximal error in the OOD case. The OOD results are normalized based on the maximal error in the
OOD case (i.e., 210)

H.1 Additional Filtering Criteria

Fig. 47 Arithmetic DNNs: results using the MAX filtering criterion, and the COMBINED filtering criterion
(identical results). Our technique selected models {1, 5, 8, 10}
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