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1. Introduction

Both the diameter of a graph and its expansion capture the “connectedness” of the 
graph, albeit in two very different senses. The diameter, i.e., the maximal distance be-
tween a pair of vertices, provides an upper bound on the length of shortest walks in 
the graph, whereas expansion measures the minimal ratio between a subset of vertices 
and its boundary. We revisit the classical question of relating these two traits. One di-
rection is well known: good expansion implies a low diameter. Specifically, the diameter 
of a graph with good expansion is O(logn) (see, e.g., [29]), which is asymptotically the 
lowest possible. We focus on the opposite, and largely unexplored, direction.

In general, low diameter does not guarantee good expansion. Consider, e.g., a graph on 
n vertices that is a disjoint union of two cliques, each of size n2 (we use “size” throughout 
this paper to refer to the number of vertices). Removing one edge from each clique and 
connecting the cliques via two “bridges” results in a (n2 − 1)-regular graph of diameter 3
with very low expansion (which worsens as n → ∞). We observe, however, that this “bad” 
graph is significantly smaller than the largest (n2 −1)-regular graph of diameter 3 (which 
is of size Ω(n3)). Indeed, our investigation below reveals that, in contrast to the above, 
when the degree and the diameter are fixed and the size of the graph is “sufficiently large”, 
the graph must have “good” expansion. We formalize this statement for different notions 
of “large”, for different forms of expansion (edge, vertex, and spectral expansion), and 
for undirected/directed graphs. Our results are presented in Section 1.2, but informally, 
“sufficiently large” means that the size of the graph is close to the best-known upper 
bound on the size, in either a multiplicative or additive setting.

We formalize the above statements and discuss implications of our results for network 
design and beyond, including the unification of two competing approaches to datacenter 
network design. A preliminary version of this paper appeared in the proceedings of the 
26th Annual European Symposium on Algorithms [20]. This version contains full proofs 
of all claims, most of which were omitted from the conference version.

1.1. The degree/diameter problem

Before we can state our results, we must first define what we mean by a “large, 
low-diameter graph”. To start off: how large can a d-regular graph of diameter k (which 
we shall refer to as a “(d, k)-graph” henceforth) actually be? An upper bound on the size 
of such a graph is the classical Moore Bound [28], denoted by μd,k (see Section 2 for a 
formal definition). Extensive research has been devoted to determining the existence of 
graphs whose sizes match this upper bound (a.k.a., Moore Graphs) or well-approximate 
it. This line of study, termed the “degree/diameter problem”, was initiated by Hoffman 
and Singleton [28]. See [43] for a detailed survey of results in this active field of research.

Graphs whose sizes exactly match the Moore Bound, referred to as “Moore Graphs” 
henceforth, only exist for very few values of d and k [28,4]. Consequently, various con-
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Table 1
Summary of results relating expansion and diameter.

Size Expansion guarantees

(d, k)-graph n ≥ μd,k − O(dk/2) λ(G) = O(
√
d)

n ≥ (1 − ε)μd,k λ(G) = O(ε1/k)d

n = α · μd,k
he(G) ≥ αd

2k ·
(
1 − 1

(d−1)k

)
φV (G) ≥ α

2(k−1)+α

k = 2 n λ(G) ≤ 1+
√

1+4(d2+d−n)
2

n = α · d2 he(G) ≥ 2d+1−
√

4(1−α)d2+4d+1
4

φV (G) ≥ 2α
2α+1

k = 3 n = α · d3 φV (G) ≥ α
α+1

(d, k)-digraph
n = α · μ̃d,k

he(G) ≥ α
2k (d − 1

dk )
φV (G) ≥ α·d

2(d+1)(k−1)+α·d

structions for generating graphs whose sizes come “close” to the Moore Bound, which 
we call “approximate-Moore Graphs”, have been devised.

Specifically, constant multiplicative approximations (MMS-graphs [41]) and constant 
additive approximations (e.g., polarity graphs [22,12]) have been devised for the case 
of diameter k = 2. Delorme [43,16,17] constructed infinite series of (d, k)-graphs whose 
sizes arbitrarily approach the Moore Bound for diameters k = 3 and k = 5. Graph 
constructions whose sizes approximate the Moore Bound within non-constant multi-
plicative factors exist for arbitrary values of k (examples include, e.g., de Bruijn [15]
and Canale-Gomez [13] graphs for the undirected case, and Alegre and [43] Kautz [21]
digraphs for the directed analogue of the problem). Generally speaking, constructions of 
approximate-Moore Graphs whose sizes approach the Moore Bound for arbitrary values 
d, k remains an important and widely studied open question. In fact, multiplicative ap-
proximations are believed to exist for sufficiently large d and k, as conjectured, e.g., by 
Bollobás in [10].

Our investigation of the relation between diameter and expansion uses the Moore 
Bound as a benchmark and compares the size of (d, k)-graphs to μd,k. We consider both 
multiplicative and additive approximations to the Moore Bound. Our results establish 
that good solutions to the degree-diameter problem must be good expanders, establishing 
a novel link between two prominent and classical lines of research. In addition, our results 
yield new expansion bounds for all of the classical constructions of low-diameter graphs 
discussed above.

1.2. Our results

Our results relating the size of a (d, k)-graph to its expansion are summarized in 
Table 1, with λ(G), he(G), and φV (G) denoting spectral expansion, edge expansion, and 
vertex expansion, respectively (formal definitions can be found in Section 2). μ̃d,k is the 
analogue of the Moore Bound for directed graphs.
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We begin in Section 3 with our main results, which provide bounds on the spectral 
expansion of large (d, k)-graphs. In particular, our results establish that if the size of 
a graph is very close additively to the Moore bound, then the graph is essentially an 
optimal expander. In addition, if the graph has size that is close multiplicatively to the 
Moore bound, the spectral expansion might no longer be optimal, but is still very good.

Subsequently to our work [20], and independently from our work, Filipovski and 
Jajcay [24] established the impossibility of constant additive approximations. Specifi-
cally, [24] shows that for every fixed constant c > 0 there exist large enough d and k
such that every (d, k)-graph is of size at most μd,k − c. This resolves an early conjecture 
due to Bermond and Bollobás [7]. Interestingly, Filipovski and Jajcay use techniques 
similar to ours (discussed below) to show that the expansion of graphs of size μd,k − c

must be so high that it would violate the Alon-Boppana bound [44]. This corroborates 
the importance of studying the expansion of approximate-Moore Graphs. Importantly, 
our results (in Section 1.2) are for graphs of size at least μd,k−O(dk/2), whose existence 
remains an intriguing open question.

We next turn our attention to combinatorial notions of expansion: edge expansion 
and vertex expansion. We provide (in Section 4) guarantees on both the edge and the 
vertex expansion of (d, k)-graphs in terms of their multiplicative distance from the Moore 
Bound. Our analysis leverages careful counting arguments to bound the ratio between 
the cardinality of a set of vertices and the size of its boundary. We also prove, through 
more refined analyses, improved results for diameters 2 and 3.

Our technique. The key technical insight underlying our results for spectral expansion 
is a novel link, which we believe is of independent interest, between the nontrivial eigen-
values of a graph’s adjacency matrix and the distance of the graph from the Moore 
Bound. Specifically, the proofs of our results for spectral expansion rely on the analy-
sis of non-backtracking walks in the graph. A path is said to be non-backtracking if it 
does not traverse an edge back and forth consecutively. We prove that the matrix that 
corresponds to all non-backtracking walks of length at most k must consist of strictly 
positive entries and shares all eigenvectors of the adjacency matrix A. We establish the 
above algebraic relation between the two matrices by employing the Geronimus Poly-
nomials [9,49], a well-known class of orthogonal polynomials, as operators acting on the 
adjacency matrix. Given the spectrum of A, an asymptotic estimation of the polynomi-
als’ coefficients allows us to bound the spectrum of the non-backtracking walks matrix. 
We then subtract from the latter the all-ones matrix and use the leading eigenvalue of the 
remaining matrix (which can be computed directly) to bound the nontrivial eigenvalues 
of the adjacency matrix A.

Our technique should be contrasted with employing Hashimoto’s non-backtracking 
operator [27] to reason about non-backtracking walks in a graph (e.g., in the context 
of localization and centrality [40], clustering [36], mixing time acceleration [1], and 
percolation [30] in networks). In our context, applying Hashimoto’s operator involves 
reasoning about intricate relations between the spectra of the adjacency matrix A and 
another matrix, called the “non-backtracking matrix” (via the Ihara-Bass formula [11]). 
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Geronimus Polynomials, a subfamily of the more renowned Chebyshev polynomials, 
allow for much simpler analysis. We believe that our techniques, and the (yet to be 
explored) connections between Geronimus Polynomials and Hashimoto’s operator, are 
of independent interest and may find wider applicability.

“Not-so-sparse” expanders. Importantly, our research diverges from the main vein of 
prior research on expanders. Expanders are commonly viewed as highly-connected sparse 
graphs. Indeed, the bulk of literature on this topic assumes that the degree of these graphs 
is essentially constant with respect to the size of the graph (i.e., d � n). In contrast, the 
size of a “large” (d, k)-graph graph is O(dk).

Implications for network design and beyond. Aside from inherent theoretical interest, 
our motivation stems from the domain of network design. Low-diameter networks have 
been widely studied in the context of high-performance-computing (HPC) architectures 
(see, e.g., [33,8,2,32]), parallel computing [37], and the design of fault-tolerant networks 
[7,6,8,23,45]. Of special interest in this literature are large networks of very low diameters 
(e.g., 2 or 3), as short path lengths translate to low latency in data delivery and also 
to low packet-queuing delays and power consumption (due to having few intermediate 
network devices en route to traffic destinations [22,12,41,8,33,34]). Similarly to low-degree 
networks, expanders have been shown to induce high performance in a broad spectrum 
of network design contexts.

Recently, the focus on either the diameter or the expansion of a network topology 
gave rise to two competing approaches for datacenter architecture design [51,47,46,35,
8,33,34]. Specifically, an important line of research in datacenter design (see, e.g., [47,
46,8,26]) relies on (either implicitly or explicitly) utilizing graphs whose sizes are as 
large as possible for a given diameter and degree as datacenter network topologies.1
A different strand of research investigates how utilizing expander graphs as datacenter 
network topologies can be turned into an operational reality [51,19,31].

Our results show that these two approaches are, in fact, inextricably intertwined; not 
only do expanders exhibit low (in fact, near-optimal) diameters [29], but constructing 
large low-diameter datacenter networks effectively translates to constructing good ex-
panders. Thus these two approaches to designing datacenter networks can essentially be 
regarded as one: the search for extremely strong expanders. Our results provide new ex-
pansion guarantees for a number of well-studied low-diameter networks, including MMS 
graphs [41] (proposed for the context high-performance computing and datacenters, see 
Slim Fly [8]), polarity graphs [22,12], Canale-Gomez graphs [13], and more. See summary 
of the implications of our results for different graph constructions in Table 2. Our results 
for spectral expansion essentially match previously established results, thus generalizing 
and unifying prior construction-specific bounds.

1 The authors of [46], for instance, write that “Intuitively, the best known degree-diameter topologies 
should support a large number of servers with high network bandwidth and low cost (small degree)... Thus, 
we propose the best-known degree-diameter graphs as a benchmark for comparison.”
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Table 2
Implications for known constructions of approximate Moore Graphs. The table indicates the expansion 
guarantees established for each construction, expressed as upper bounds on the algebraic expansion λ(G), 
and lower bounds for edge and vertex expansion he(G) and φV (G).

Construction λ(G) he(G) φV (G)
de Bruijn (k = 2) [15] – – 1/3
Canale-Gomez [13] – d

2k·1.57k

(
1 − 1

(d−1)k

)
1.57−k

2(k−1)+1.57−k

Alegre digraph [43] – 25·2k

32k·dk

(
d − 1

dk

) (
2
d

)k
· 25d

16

2(d+1)(k−1)+ 25d
16

(
2
d

)k

Kautz digraphs [21] – 1
2k

(
d − 1

dk

)
d

2(d+1)(k−1)+d

Polarity graph [22,12] 1+
√

1+8(d−1)
2

2d+1−
√

4d+1
4 2/3

MMS-graphs [41] 1+ 1
3

√
d2+d+7
2

2d+1−
√

4
9
d2+4d+1

4 16/25

Beyond the implications for network design, the study of low-diameter networks also 
pertains to other areas such as feedback registers [25,38] and decoders [14].

2. Preliminaries

We provide below a brief exposition of graph expansion and the Moore Bound. We 
refer the reader to [29] and [43] for detailed expositions of these topics.

Graph expansion. Let G = (V, E) be an undirected graph of size |V | = n. G is said to be 
d-regular if each of its vertices is of degree d, and of diameter k if the maximum distance 
between any two vertices in the graph is k. d-regular graphs of diameter k are denoted 
throughout the paper as (d, k)-graphs.

The combinatorial expansion of the graph reflects an isoperimetric view and is the 
minimal ratio between the boundary ∂S of a set S and its cardinality. Different inter-
pretations of ∂S give rise to different notions of expansion.

The edge expansion of G is

he(G) := min
|S|≤n

2

|e(S, Sc)|
|S|

where e(S, Sc) := {(u, v) ∈ E|u ∈ S, v ∈ Sc}.
The vertex expansion of G is

φV (G) = min
0<|S|≤n

2

|N(S)|
|S| ,

where N(S) := {v ∈ Sc| ∃u ∈ S s.t. (u, v) ∈ E}. The definitions of edge and vertex 
expansion admit several variants, based on either the size of the cut or the type of the 
boundary (see [29] for examples). While we adopt the most common of those, our results 
can be stated w.r.t. other variants as well.

We next define the algebraic (spectral) notion of expansion. Let A be the adjacency 
matrix of the graph. Since A is symmetric it is diagonalizable with respect to an or-
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thonormal basis, and the corresponding eigenvalues are real, and so can be ordered as 
follows:

λ1 ≥ λ2 ≥ ... ≥ λn.

The first eigenvalue of a d-regular graph satisfies λ1 = d and has the all-ones vector
1n as the associated eigenvector. Let λ(G) := max{|λ2|, |λn|}. A graph G is said to be an 
expander if λ(G) is bounded away from d by some constant [3]. The algebraic expansion
(or spectral expansion) is then defined as d −λ(G), termed the spectral gap.2 The larger 
the gap, the better the expansion.

The Moore Bound. How large can a (d, k)-graph be? A straightforward upper bound is 
obtained by summation of the vertices according to their distance from a fixed vertex 
v0 ∈ V . Let mj denote the number of vertices at distance j from v0. Note that m0 = 1
and m1 = d. As vertices at distance j ≥ 2 must be adjacent to some vertex at distance 
j−1, we have that mj ≤ (d −1)mj−1. A simple induction implies that mj ≤ d(d −1)j−1. 
Now since the diameter is k, all vertices have distance at most k from v0, and hence 
n ≤ 1 + d + d(d − 1) + d(d − 1)2 + ... + d(d − 1)k−1. We denote this expression, known 
as the Moore Bound of the graph, by

μd,k := 1 + d
k−1∑
i=0

(d− 1)i =
{

2k + 1 if d = 2
1 + d · (d−1)k−1

d−2 if d > 2

3. Diameter vs. algebraic expansion

We establish below a relationship between the nontrivial eigenvalues of A and the 
distance of the graph from the Moore Bound. This relationship will enable us to prove a 
variety of bounds on the algebraic expansion of approximate-Moore graphs. This novel 
link relies on the following class of orthogonal polynomials: let P0(x) = 1, P1(x) = x, 
P2(x) = x2 − d, and for every t > 2 define Pt(x) by the recurrence relation

Pt(x) = xPt−1(x) − (d− 1)Pt−2(x).

The significance of this class of polynomials, termed the “Geronimus Polynomials”
[9,49], is reflected in the main technical theorem of this section:

Theorem 1. Let G be (d, k)-graph of size n. Then, every nontrivial eigenvalue λ < d of 
G satisfies ∣∣∣∣∣

k∑
t=0

Pt(λ)

∣∣∣∣∣ ≤ μd,k − n

2 We use the two-sided notion of spectral gap throughout the paper, as opposed to d − λ2.
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Before delving into the proof of Theorem 1, we discuss some of its implications. 
Theorem 1 can be applied to provide meaningful guarantees regarding the spectral ex-
pansion of low-diameter graphs whose sizes approach the Moore Bound. Constructing 
large graphs of very low diameter, e.g., k = 2, 3, has received much attention from both 
a theoretical perspective (see, e.g., [22,12,41]) and a practical perspective (see, e.g., [8,
33,34]). An immediate implication of Theorem 1 is the following:

Theorem 2. Let G be a d-regular graph of diameter k = 2 and size n, then

λ(G) ≤ 1 +
√

1 + 4(d2 + d− n)
2 .

Proof. Applying the Geronimus Polynomials Pt(λ) for 0 ≤ t ≤ 2 in Theorem 1 yields

|1 + λ + (λ2 − d)| ≤ μd,2 − n = d2 + 1 − n.

The result follows from solving the quadratic inequality. �
This theorem immediately bounds the algebraic expansion of polarity graphs [22,12]

and MMS graphs [41] claimed in Table 2, as both of these classes of graphs have diameter 
2. What about graphs of diameter k > 2? A more careful analysis of the Geronimus 
polynomials for larger values of k allows us to use Theorem 1 to prove two different 
expansion bounds. The first is an extremely strong expansion bound but requires the 
size of the graph to be additively close to the Moore bound, whereas the second allows a 
small multiplicative gap between the size and the Moore bound but establishes a weaker 
expansion guarantee.

Theorem 3. Let d, k be positive integers. If G is a (d, k)-graph of size n ≥ μd,k−Od(dk/2), 
then λ = O(dα) for every constant α > 1

2 .

The term Od(dk/2) should be interpreted as an asymptotic expression in d with respect 
to a fixed k. Namely, the Theorem 3 suggests that for every fixed diameter k, there exists 
a large enough degree d such that an additive approximation of O(dk/2) to the Moore 
Bound implies a strong bound on its second eigenvalue. Since any d-regular graph must 
satisfy λ(G) ≥

√
d (see [29] for details), the upper bound of λ = O(dα) for every constant 

α > 1
2 is essentially optimal.

Theorem 4. Let d, k be positive integers. If G is a (d, k)-graph of size n ≥ (1 − ε)μd,k, 
then λ(G) ≤ O(ε1/k) · d.

Delorme [43,16,17] proved the existence of an infinite series of (d, k)-graphs whose 
sizes arbitrarily approach the Moore Bound for diameters k = 3 and k = 5. Specifically, 
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Delorme proved that lim infd→∞
nd,k

dk = 1, for k = 3, 5, where nd,k is the largest possible 
size of a (d, k)-graph. This means that for k = 3, 5, for any constant ε > 0 there is some 
value d′ such that for all d ≥ d′ there is a (d, k)-graph with at least (1 − ε)μd,k vertices. 
Hence, Theorem 4 implies that these graphs are good expanders.

Bollobás conjectured that (d, k)-graphs of size n ≥ (1 −ε)dk always exist for sufficiently 
large d and k [10]. Delorme’s results may be perceived as supporting this conjecture. We 
point out that proving Bollobás’ conjecture (or even extending Delorme’s results to other 
specific values of k and d) would immediately imply, by Theorem 4, similar expansion 
guarantees. The remainder of this section is devoted to the proofs of Theorems 1, 3, 
and 4.

3.1. Bounding the nontrivial eigenvalues (proof of Theorem 1)

Our high-level approach to proving Theorem 1 is the following: We aim to bound λ(G), 
the second-largest eigenvalue (in absolute value) of the adjacency matrix A. We instead 
consider a different matrix M , obtained by employing the Geronimus Polynomials as 
operators over A. The combinatorial properties of this class of polynomials allow us to 
show that M1n = (μd,k − n)1n. Applying the Perron-Frobenius Theorem asserts that 
this eigenvalue serves as a bound over the entire spectrum of M . We then utilize the 
algebraic relation between both matrices: Namely, we bound A’s nontrivial spectrum, 
using the fact that M shares the same eigenvectors as A, and that its eigenvalues may 
be derived from those of A via an operation of the Geronimus Polynomials. This will 
then imply Theorem 1.

We begin with the known solution to the recurrence, formulated via a trigonometric 
expression that holds for all t > 0 [50]:

Pt(2
√
d− 1 cos θ) = (d− 1)t/2−1 (d− 1) sin((t + 1)θ) − sin((t− 1)θ)

sin θ
(1)

One can easily check that this identity applies for t = 1, 2 and verify that the re-
currence relation holds for t > 2. All roots of Pt are real and lie in the interval 
[−2

√
d− 1, 2

√
d− 1] [5,39].

Our framework applies the Geronimus Polynomials as operators over the adjacency 
matrix A. This method has several advantages: Algebraically, since Pt(A) is a linear 
combination of powers of A, each eigenvector v of A is an eigenvector of Pt(A) as well. 
Thus, the spectrum of Pt(A) is given by spec[Pt(A)] = {Pt(λ) | λ is an eigenvalue of A}. 
Viewed from a combinatorial perspective, this operation allows us to dismiss backtrack-
ing walks from consideration. By backtracking, we refer to walks that traverse an edge 
in both directions consecutively. Note that a non-backtracking path need not be simple 
(a nontrivial cycle is a typical example of a non-backtracking yet non-simple path). The 
following claim, taken from [48] states this observation formally. The proof is straight-
forward and is included for completeness.
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Claim 1. Let A be the adjacency matrix of a d-regular graph G. Then, Pt(A) is the n ×n

matrix in which the (u, v)-entry equals the number of non-backtracking walks of length 
exactly t between u and v.

Proof. We use induction on t. Note that P0(A) = I, P1(A) = A and P2(A) = A2 − dI

satisfy the claim. For the induction step, suppose that the claim holds for all Geronimus 
Polynomials of order strictly less than t. Consider the term A ·Pt−1(A), which corresponds 
to walks of length t such that the first t −1 hops on the path are non-backtracking. Note 
that reducible walks in this term are those walks that can only be reduced by eliminating 
their last two arcs and so there must be exactly (d − 1)Pt−2(A) of them. Being the 
difference between those quantities, it follows that Pt(A) = A ·Pt−1(A) − (d −1)Pt−2(A)
corresponds to the non-backtracking walks. �

As a corollary, the entries of Pt(A) are non-negative for all t ≥ 0. In addition, as 
d(d − 1)t−1 is the number of non-backtracking walks of length t > 0 starting from every 
v ∈ G, this quantity equals the sum of entries in every row of Pt(A). Hence, Claim 1
implies that Pt(A)1n = d(d − 1)t−11n.

Summing over the indices 0 ≤ t ≤ k, as discussed e.g., at [48] yields

k∑
t=0

Pt(A)1n =
(

1 +
k∑

t=1
d(d− 1)t−1

)
1n = μd,k · 1n. (2)

We are now ready to prove Theorem 1:

Proof of Theorem 1. Given Claim 1, the sum of matrices 
∑k

t=0 Pt(A) corresponds to 
all non-backtracking walks of length at most k. Since G is of diameter k, this sum 
of matrices must consist of strictly positive entries, and can thus be represented as ∑k

t=0 Pt(A) = J + M , where J is the all ones matrix and M is non-negative. We now 

have M1n =
(∑k

t=0 Pt(A) − J
)
1n = (μd,k − n)1n, where the second equality is due 

to (2).
Recall that A is symmetric and thus diagonalizable w.r.t. an orthogonal basis. There-

fore, every eigenvector v /∈ span{1n} must be orthogonal to 1n. Since J1n = n1n
and rank(J) = 1, it follows that Jv = 0. Hence, Mv =

(∑k
t=0 Pt(A) − J

)
v =∑k

t=0 Pt(A)v =
∑k

t=0 Pt(λ)v.
This implies in particular that

spec(M) =
{

k∑
t=0

Pt(λ) | λ is a nontrivial eigenvalue of A
}

∪ {μd,k − n}.

We now apply the Perron-Frobenius Theorem (see [42]), which states that a non-negative 
matrix admits a non-negative eigenvector with a non-negative eigenvalue that is larger or 
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equal, in absolute value, to all other eigenvalues. Now, since 1n is the only non-negative 
eigenvector of M , we conclude that μd,k−n is the leading eigenvalue of M and the claim 
follows. �
3.2. Proof of Theorem 3

Our proof of Theorem 3 utilizes a careful asymptotic estimation of the Geronimus 
Polynomials’ coefficients. When λ(G) is of order larger than 

√
d, our analysis asserts 

that 
∣∣∣∑k

t=0 Pt(λ)
∣∣∣ must be larger than O(dk/2) for some nontrivial eigenvalue λ of G, 

thus resulting in a contradiction to Theorem 1.
For our purposes, it will be beneficial to use the representation Pt(x) =

∑t
i=0 at,ix

i, 
where at,i is the i-th coefficient of the t-th Geronimus Polynomial. We note the following: 
(i) Pt is either odd or even3 for each t > 0, and the parity of Pt equals the parity of t. This 
can be shown either by induction using the recurrence relation, or straightforward from 
the solution (1); (ii) A comparison of the leading coefficients in the recurrence implies 
that at,t = at−1,t−1. Applying the boundary conditions (a1,1 = a0,0 = 1) yields at,t = 1
for each t > 0; (iii) Setting θ = π

2 in (1) yields at,0 = d(d − 1)t/2−1(−1)t/2 whenever t is 
even.

The following easy-to-prove claim provides us with asymptotic estimates for the rest 
of the coefficients. Note that the Θ(·) notation is hiding factors of t (we will only use 
this claim where t is constant).

Claim 2. Let Pt(x) =
∑t

i=0 at,ix
i denote the Geronimus polynomial of order t, then

at,i =
{

(−1) t−i
2 Θ

(
d

t−i
2

)
if (t− i) is even

0 if (t− i) is odd

for each 0 ≤ i ≤ t.

Proof. The parity of Pt implies that at,i = 0 whenever t − i is odd. Hence, it suffices to 
consider the case of an even difference, which we prove by induction on pairs (t, i) with 
i ≤ t. Note that at,t = 1 for all t as claimed, and moreover that the claim holds for (t, i)
where t ≤ 2 by construction. This forms the base case of our induction.

Now consider some (t, i) with t ≥ 3 and i < t. It is easy to see from the recurrence 
relation defining Pt that at,i = at−1,i−1 − (d − 1)at−2,i, and so by induction we get that

at,i = at−1,i−1 − (d− 1)at−2,i

= (−1)
t−1−(i−1)

2 Θ(d
t−1−(i−1)

2 ) − (d− 1)((−1)
t−2−i

2 Θ(d
t−2−i

2 ))

= (−1)
t−i
2 Θ(d

t−i
2 ) − (−1)

t−2−i
2 Θ(d

t−i
2 )

3 A polynomial q(x) is said to be even if q(x) = q(−x) and odd if q(−x) = −q(x).
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= (−1)
t−i
2 Θ(d

t−i
2 ) + (−1)

t−i
2 Θ(d

t−i
2 )

= (−1)
t−i
2 Θ(d

t−i
2 )

as claimed. �
Claim 2 immediately implies the next corollary, which is just a slightly easier to use 

formulation of Pt(x).

Corollary 1. The Geronimus Polynomial of order t can be written as

Pt(x) =
� t

2 	∑
i=0

(−1)i · Θ(di) · xt−2i.

We are now ready to apply this machinery. The following lemma bounds the value of 
these polynomials on values which are “small”.

Claim 3. Let 1
2 < α ≤ 1, and let |λ| = Θ(dα). Then |Pt(λ)| = Θ(dtα).

Proof. We use induction on t. For t = 0 we have that P0(λ) = 1 = Θ(d0), and for t = 1
we have that |P1(λ)| = |λ| = |Θ(dα)|. Assume that the claim holds for the Geronimus 
Polynomials of order less than t. Using Corollary 1, we now have

Pt(λ) =
� t

2 	∑
i=0

(−1)i · Θ(di) · λt−2i =
� t

2 	∑
i=0

(−1)i · Θ(di) · Θ(dα(t−2i))

=
� t

2 	∑
i=0

(−1)i · Θ(dtα+i(1−2α)).

Whenever α > 1
2 , the absolute value of this equals Θ(dtα) as claimed. �

The proof of the theorem follows directly.

Proof of Theorem 3. Suppose that A obtains an eigenvalue λ = Θ(dα) for some α > 1
2 . 

Then, applying Claim 3, we have:∣∣∣∣∣
k∑

t=0
Pt(λ)

∣∣∣∣∣ ≥ |Pk(λ)| −
k−1∑
t=0

|Pt(λ)| = Θ(dkα) −
k−1∑
t=0

Θ(dtα) = Θ(dkα)

This expression, however, is upper bounded by μd,k − n (by Theorem 1), which is 
O(dk/2) by the assumption of the Theorem 3. We thus have Θ(dkα) ≤ μd,k−n ≤ O(dk/2), 
and this is, of course, a contradiction to the assumption α > 1

2 . We therefore conclude 
that λ = O(dα) for every α > 1

2 . �
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3.3. Proof of Theorem 4

The proof of Theorem 4 relies on some of the ideas introduced in the proof of Theo-
rem 3. Let λ be a nontrivial eigenvalue of G. We wish to show that |λ| ≤ O(ε1/k)d. 
If |λ| ≤ O(d2/3) then we are done. Suppose, then, that |λ| ≥ ω(d2/3), and hence 
d = o(|λ|3/2). Consider the sum | 

∑k
t=0 Pt(λ)|. Corollary 1, and the discussion which 

showed that at,t = 1, imply that this sum is at least

∣∣∣∣∣
k∑

t=0
Pt(λ)

∣∣∣∣∣ ≥ |λk + λk−1| −
�k/2	∑
i=1

(
Θ(di)|λ|k−2i + Θ(di)|λ|k−2i−1)

≥ |λk + λk−1| −
�k/2	∑
i=1

(
Θ(|λ|k−(i/2)) + Θ(|λ|k−1−(i/2))

)
≥ Θ(|λk|),

where the second inequality follows from the assumption that |λ| ≥ ω(d2/3).
When we plug this into Theorem 1, we get that Θ(|λk|) ≤ μd,k − n ≤ εμd,k. Since 

μd,k ≤ cdk for some constant c, we get that c′|λk| ≤ εcdk for some constants c and c′, 
and hence |λ| ≤

(
c
c′

)1/k
ε1/kd, proving the theorem. �

4. Diameter vs. combinatorial expansion

We present below our results for combinatorial expansion. We first point out that 
applying the Cheeger inequality [29] to our bounds on spectral expansion immediately 
implies bounds on combinatorial expansion. Specifically, the Cheeger inequality states 
that he(G) ≥ d−λ2

2 . When combined with Theorems 3 and 4, this yields the following 
bounds.

Theorem 5. Let G be a (d, k) graph with n vertices, for some constant k > 0. If n ≥
μd,k −O(dk/2) then he(G) ≥ d−O(

√
d)

2 .

Theorem 6. Let G be a (d, k) graph with n vertices, for some constant k > 0. If n ≥
(1 − ε)μd,k then he(G) ≥ (1−O(ε1/k))d

2 .

Observe that, since clearly d/2 is an upper bound on he(G), both of these bounds 
imply very high expansion guarantees when n is very close to the Moore Bound. However, 
when this is not so, e.g., when n = μd,k/k, neither bound yields nontrivial expansion 
guarantees.

To provide stronger expansion guarantees for graphs that do not come very close 
(additively/multiplicatively) to the Moore Bound, we analyze combinatorial expansion 
directly. We next present our bounds for edge and vertex expansion in undirected 
and directed graphs. We discuss the implications of these expansion bounds for known 
(d, k)-graph constructions in Table 2 and in Appendix A.
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Undirected graphs. Our main result of this section is the following:

Theorem 7. Let G = (V, E) be a d-regular graph of size n and diameter k. If n = α ·μd,k, 
then

he(G) ≥ αd

2k ·
(

1 − 1
(d− 1)k

)
and φV (G) ≥ α

2(k − 1) + α
.

Our proof of Theorem 7 utilizes a counting argument. As the graph has diameter k, 
each pair of vertices on opposite sides of a cut must be connected via a path of length 
at most k that traverses the boundary. However, there is an upper bound, induced by 
the degree and diameter of the graph, on the number of such walks that traverse a given 
edge/vertex. A careful examination of the implications of these two limitations provides 
us with a lower bound on the size of the boundary.

Proof. Let (S, Sc) be a cut in the graph, and let |S| = s ≤ n
2 . As the diameter equals k, 

every pair of vertices that lie on both sides of the cut must be connected via a path of 
length at most k. We thus have s(n − s) such walks, each of which passes through some 
edge in the cut.

How many walks of length at most k include a given edge e ∈ E? As G is d-regular, 
there are at most (d − 1)l−1 walks of length l for which e is in the i-th position in the 
path. It follows that no more than l ·(d −1)l−1 walks of length l use a specific edge, hence 
the number of walks of length at most k that utilize a fixed edge is upper bounded by

fd−1(k) =
k∑

l=1

l · (d− 1)l−1.

Let us find a simpler formulation of fd−1(k). Integrating yields

Fd−1(k) =
k∑

l=1

(d− 1)l = (d− 1)k+1 − 1
(d− 1) − 1 .

Differentiating brings us back to

fd−1(k) = (k + 1)(d− 1)k(d− 2) − [(d− 1)k+1 − 1]
(d− 2)2

≤ (k + 1)(d− 1)k(d− 2) − (d− 1)k(d− 2)
(d− 2)2

= k(d− 1)k

(d− 2)

Now, s(n − s) walks use the cut, and every edge in the cut can be a part of at most 
fd−1(k) walks. It follows that |e(S, Sc)| ≥ s(n−s)

fd−1(k) for every cut (S, Sc) in G. Hence, the 
cut that realizes he(G) satisfies
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he(G) = |e(S, Sc)|
|S| ≥ s(n− s)(d− 2)

s · k(d− 1)k ≥ n

2 · (d− 2)
k(d− 1)k

= αd · ((d− 1)k − 1)
2(d− 2) · (d− 2)

k(d− 1)k

= αd

2k ·
(

1 − 1
(d− 1)k

)
. �

A similar argument applies for vertex expansion. Let x = |N(S)| denote the size of 
the outer boundary of S ⊆ V . Then |S| · |Sc \N(S)| = s(n − s − x) pairs of vertices are 
connected via a path of length 2 ≤ l ≤ k in which one of the inner vertices of the path 
is in N(S). But how many walks of this form can there be?

A path of length l consists of (l − 1) possible positions for an inner vertex. As there 
are d(d −1)l−1 walks of length l passing through a vertex in a fixed position, we conclude 
that the number of walks is at most

k∑
l=2

x(l − 1) · d(d− 1)l−1 = xd
k∑

l=2

(
l(d− 1)l−1 − (d− 1)l−1)

= xd

(
fd−1(k) − 1 − (d− 1)k − (d− 1)

d− 2

)
≤ xd

(
k(d− 1)k

(d− 2) − 1 − (d− 1)k − (d− 1)
d− 2

)
≤ xd

d− 2
(
(k − 1)(d− 1)k + 1

)
≤

(
d + 1
d− 2

)
· x(k − 1)(d− 1)k.

As the number of walks must exceed the number of pairs connected by a path, it 
follows that

s(n− s− x) ≤
(
d + 1
d− 2

)
· x(k − 1)(d− 1)k,

and thus, the cut that realizes φV (G) satisfies

φV (G) ≥ x

s
≥ n− s

( d+1
d−2 )(k − 1)(d− 1)k + s

≥ 0.5n
( d+1
d−2 )(k − 1)(d− 1)k + 0.5n

≥ α · μd,k

2( d+1 )(k − 1)(d− 1)k + α · μ
d−2 d,k
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≥
αd · (d−1)k−1

d−2

2( d+1
d−2 )(k − 1)(d− 1)k + α · d · (d−1)k−1

d−2

≥ α

2(k − 1) + α
. �

4.1. Directed graphs

We consider directed graphs next. We begin by introducing the relevant terminology 
and notation. We say that a directed graph (a.k.a. digraph) G = (V, E) is d-regular if 
both the out-degree and the in-degree of each vertex equals d. A cut in a digraph is 
asymmetric, and consists of all edges directed from S to Sc,

e(S, Sc) = {(u, v) ∈ E|u ∈ S, v ∈ Sc}.

The diameter is still defined as the maximal distance between two vertices, and the 
corresponding Moore Bound is only slightly different (as there are potentially di vertices 
of distance i from a given vertex): μ̃d,k =

∑k
i=0 d

i = dk+1−1
d−1 .

The following result is the directed analogue of Theorem 7.

Theorem 8. Let G be a d-regular, k-diameter directed graph of size n = α · μ̃d,k, then

h(G) ≥ α

2k

(
d− 1

dk

)
and φV (G) ≥ α · d

2(d + 1)(k − 1) + α · d .

Proof of Theorem 8. We follow the steps of the analysis in the undirected case, starting 
with edge expansion. As before, let (S, Sc) be the cut that realizes he(G) with |S| = s ≤
n/2. The number of walks of length at most k that utilize a specific edge is now bounded 
by

fd(k) =
k∑

l=1

l · dl−1 ≤ k · dk
(d− 1) ,

and since |e(S, Sc)| ≥ s(n−s)
fd(k) , we have

he(G) = |e(S, Sc)|
|S| ≥ s(n− s)(d− 1)

s · k · dk ≥ n

2 · (d− 1)
kdk

= α · μd,k(d− 1)
2k · dk

= α · (dk+1 − 1)
2k · dk .

For the vertex expansion, we again consider a cut (S, Sc) with |S| = s ≤ n/2 and 
x = |N(S)|. In a digraph there are dl walks of length l passing through a vertex in a 
fixed position. It follows that the number of walks of length 2 ≤ l ≤ k which include a 
vertex of N(S) as one of its inner vertices is at most
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k∑
l=2

x(l − 1) · dl = xd

k∑
l=2

(ldl−1 − dl−1)

= xd

(
fd(k) − 1 − dk − d

d− 1

)
≤ xd

(
kdk

(d− 1) − 1 − dk − d

d− 1

)
≤

(
d + 1
d− 1

)
· x(k − 1)dk.

It follows that

s(n− s− x) ≤
(
d + 1
d− 1

)
· x(k − 1)dk

Hence

φV (G) = x

s
≥ n− s(

d+1
d−1

)
(k − 1)dk + s

≥ 0.5n(
d+1
d−1

)
(k − 1)dk + 0.5n

≥ α · μd,k

2
(

d+1
d−1

)
(k − 1)dk + α · μd,k

= α · dk+1

2(d + 1)(k − 1)dk + α · dk+1

= α · d
2(d + 1)(k − 1) + α · d ,

as claimed. �
Refined results for low-diameter graphs. Much research on constructing low-diameter 
graphs focuses on diameters 2 and 3 (see, e.g., [43,22,41]). Graphs of very low diameter 
are particularly important from a practical perspective [8,33,34]. The following theorem 
improves upon our results for the edge expansion and vertex expansion of (d, k)-graphs.

Theorem 9. Let G = (V, E) be an undirected (d, 2)-graph of size n = α · d2. Then

he(G) ≥ 2d + 1 −
√

4(1 − α)d2 + 4d + 1
4 and φV (G) ≥ 2α

2α + 1 .

Proof. Let (S, Sc) be a cut in the graph with |S| = s ≤ n
2 . Let x = |e(S, Sc)| denote the 

number of edges in the cut. There are s(n −s) pairs of vertices such that one vertex is in 



JID:YJCTB AID:3262 /FLA [m1L; v1.260; Prn:2/09/2019; 14:26] P.18 (1-24)
18 M. Dinitz et al. / Journal of Combinatorial Theory, Series B ••• (••••) •••–•••
S and the other is in Sc, and exactly x of these pairs are connected by a path of length 
1. Hence s(n − s) − x such pairs are connected by a path of length 2.

How many such length-2 walks are there? For each vertex v ∈ V , let av denote the 
number of edges in the cut that are incident on v. Given an edge {u, v} ∈ e(S, Sc), the 
number of length-2 walks that use this edge with both ends in different sides of the cut 
is (d − au) + (d − av). It follows that the total number of length-2 walks with both ends 
in different sides of the cut is exactly∑

{u,v}∈e(S,Sc)

((d− au) + (d− av)) = 2dx−
∑

{u,v}∈e(S,Sc)

(au + av).

As every vertex u ∈ V contributes exactly au summands to the sum, the expression 
above equals

2dx−
(∑

u∈S

a2
u +

∑
u∈Sc

a2
u

)
.

Since 
∑

u∈S au =
∑

v∈Sc av = x, this expression is maximized (by employing, e.g., 
Cauchy-Schwarz inequality) whenever au = x

s for all u ∈ S and av = x
n−s for all v ∈ Sc. 

That is, it is maximized when the edges in the cut are spread evenly between all vertices 
from the every side of the cut. It follows that the total number of length-2 walks which 
cross the cut is at most

2dx− s
(x
s

)2
− (n− s)

(
x

n− s

)2

= x

(
2d− x

s
− x

n− s

)
.

This number of walks should connect s(n − s) − x pairs of vertices from both sides of 
the cut. We thus get that s(n − s) − x ≤ x 

(
2d− x

s − x
n−s

)
. Rearranging terms yields 

x2 · n
s(n−s) − x(2d + 1) + s(n − s) ≤ 0.

It follows that

2d + 1 −
√

(2d + 1)2 − 4n
2 n
s(n−s)

≤ x ≤ 2d + 1 +
√

(2d + 1)2 − 4n
2 n
s(n−s)

.

This means that the size of the cut is bounded from below and from above. In order 
to lower bound the edge expansion, we only need to use the inequality on the left:

he(G) = |e(S, Sc)|
|S| = x

s
≥ 2d + 1 −

√
(2d + 1)2 − 4n

2
(

n
n−s

)
≥ 2d + 1 −

√
(2d + 1)2 − 4α · d2

4 .
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Similarly, if x = |N(S)| denotes the size of the outer boundary of S, then at least 
|S| · |Sc \N(S)| = s(n − s − x) pairs of vertices are connected via length-2 walks whose 
middle vertex lies in N(S). However, the number of such walks through a fixed middle 
vertex is at most 

(
d
2
)2. It follows that

s(n− s− x) ≤ x

(
d

2

)2

,

and rearranging this yields the inequality

s(n− s) ≤ x

(
d2

4 + s

)
.

We thus have

φV (G) ≥ x

s
≥ n− s

0.25d2 + s
≥ 0.5n

0.25d2 + 0.5n = 2α
2α + 1 . �

We can extend our analysis to graphs of diameter 3, yielding the following theorem.

Theorem 10. Let G = (V, E) be a (d, 3)-graph of size n = α · d3, then φV (G) ≥ α
α+1 .

Proof. Let S ⊂ V be a subset of size s ≤ n
2 , and let x = |N(S)| denote the size of 

its outer boundary. Then at least |S| · |Sc \ N(S)| = s(n − s − x) pairs of vertices are 
connected via walks of length 2 or 3 which pass through N(S). Note that a length-3 path 
of this kind must contain a length-2 path whose middle vertex lies in N(S) and both 
ends in different sides of the cut. It follows that there are at most 2 

(
d
2
)2 (d − 1) such 

length-3 walks and 
(
d
2
)2 such length-2 walks. This implies that

s(n− s− x) ≤ x ·
(

2
(
d

2

)2

(d− 1) +
(
d

2

)2
)
,

and hence

s(n− s) ≤ x ·
(
d2

2 (d− 1) + d2

4 + s

)
.

We thus have

φV (G) = x

s
≥ n− s

d2

2 (d− 1) + d2

4 + s
≥ 0.5n

d3

2 − d2

4 + 0.5n
= α

α + 1 − 1
d

. �
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5. Conclusion and open questions

We revisited the classical question of relating the expansion and the diameter of graphs 
and showed that not only do good expanders exhibit low diameter but the converse is also, 
in some sense, true. We also discussed the implications of our results for constructions 
from the rich body literature on low-diameter graphs. We leave the reader with many 
interesting open questions, including: (1) Tightening the gaps. An obvious open question 
is improving upon our lower bounds and establishing upper bounds on the expansion 
of fixed-diameter graph constructions. (2) Benchmarking against the optimal (largest 
possible) (d, k)-graph. We used the Moore Bound as a benchmark. Another approach 
would be to compare against the size of the largest possible (d, k)-graph. (3) Geronimus 
Polynomials vs. Hashimoto’s non-backtracking operator. The operation of the Geronimus 
Polynomials over the adjacency matrix of the graph offers a new perspective on its 
non-backtracking walks (as established in Lemma 1). This suggests a non-trivial relation 
between these polynomials and Hashimoto’s non-backtracking operator, which we believe 
is of independent interest and may find wider applicability.
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Appendix A. Implications for known constructions

A.1. Undirected graphs

The results in section 4 can be directly applied to obtain expansion guarantees for 
well known constructions of large (d, k)-graphs. The most general of these is perhaps 
the undirected de Bruijn graph [15], which may be constructed for every diameter k and 
even degree d (the detailed definition may be found in [43]). These graphs are of size 

n ≥
(
d
2
)k and have been extensively applied in various contexts, including the design of 

feedback registers [25,38], decoders [14], and computer networks [7,6,23,37,45].
As for the spectral guarantees for this construction, since the second eigenvalue of 

these graphs is known to be λ2 = d cos
(

π
k+1

)
[18], applying the Cheeger inequality 

yields

he(G) ≥
d− d cos( π

k+1 )
2 ∼ d

4

(
π

k + 1

)2

.

The vertex expansion is thus

φV (G) ≥ 1
4

(
π

k + 1

)2

.
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While applying Theorem 7 implies weaker guarantees, whenever k = 2 this construc-
tion is a 1

4 -approximation to the Moore Bound, and thus by the refined argument in 
Theorem 9, we have

φV (G) ≥ 1
3 .

This constitutes the best-known vertex-expansion guarantee for (d, 2)-de Bruijn graphs.
Canale and Gomez [13] made considerable progress on the degree-diameter problem 

by giving a construction of (d, k)-graphs of size n ≥
(

d
1.57

)k for an infinite set of values d
and k. In these graphs the expansion guarantees from our theorems are slightly better:

he(G) ≥ d

2k · 1.57k ·
(

1 − 1
(d− 1)k

)
, and

φV (G) ≥ 1.57−k

2(k − 1) + 1.57−k
.

This, to the best of our knowledge, is the first analysis of the Canale-Gomez graphs 
and thus these results constitute the highest expansion guarantees for this construction.

Since the only known constructions that actually draw close to the Moore Bound are of 
diameter k = 2, this case is of particular importance for us. The largest known such con-
structions are based on polarity graphs, first introduced by Erdős and Renyi [22] and then 
independently by Brown [12]. The design of these graphs makes use of finite projective 
geometries in order to produce d-regular graphs of diameter 2 and of size n = d2 −d +1. 
Another important construction, that attempts to yield large (d, k)-graphs that (unlike 
polarity graphs) are also vertex-transitive, was introduced by McKay, Miller and Siran in 
[41]. This property aims to capture some sort of symmetry by the requirement that the 
automorphism group of the graph acts transitively upon its vertices. This construction, 
known as MMS-graphs, is of size n = 8

9 (d + 1
2 )2 and diameter 2 and was proposed as the 

topology of high performance computing networks in [8] due to its good performance in 
simulation in terms of latency, bandwidth, resiliency, cost, and power consumption.

Applying Theorem 9 to polarity graphs imply that these graphs enjoy expansion of

he(G) ≥ 2d + 1 −
√

4d + 1
4 , and

φV (G) ≥ 2
3 .

We note that as d2 −
√
d−1
2 and 1

2 are the best known lower bound for the edge and 
vertex expansion respectively (obtained by applying the Cheeger inequality for the known 
spectral gap of these graphs), both bounds depicted here constitute the best expansion 
guarantees to date for this important construction.
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Applying the same theorems for MMS-graphs yields

he(G) ≥
2d + 1 −

√
4
9d

2 + 4d + 1
4 ≈ d

3 , and

φV (G) ≥
16
9

16
9 + 1

= 16
25 .

Here, the best known bounds are 2d+1
6 and 1

3 + 1
6d respectively (also derived from 

the Cheeger inequality). Note that while the edge expansion guarantee presented here is 
slightly weaker, the vertex expansion guarantee is substantially tighter.

A.2. Directed graphs

In the case of directed graphs, the state of the art for degree d ≥ 2 and diameter 
k ≥ 4 are graphs of size n = 25 · 2k−4 obtained from the Alegre digraph (see [43]) and its 
iterated line digraphs. Applying Theorem 8 yields the bounds

h(G) ≥
(

2
d

)k

· 25
16 · 1

2k

(
d− 1

dk

)
, and

φV (G) ≥
( 2
d

)k · 25
16 · d

2(d + 1)(k − 1) +
( 2
d

)k · 25
16 · d

.

For the remaining values of degree and diameter, the iterated line digraphs of complete 
digraphs (known in the literature as Kautz digraphs [21]) have been proposed as the 
underlying topology in the design of computer networks and architectures in [6,7]. These 
graphs are of size n = dk + dk−1, and thus by Theorem 8 enjoy expansion of

h(G) ≥ 1
2k

(
d− 1

dk

)
, and

φV (G) ≥ d

2(d + 1)(k − 1) + d
.

Here again, these bounds represent the best expansion guarantees to date. While 
these expressions do not demonstrate near-optimal expansion, let us recall that most 
applications of expander graphs only require h(G) and φV (G) to be bounded away from 
zero (see [29] for a variety of examples). Hence these bounds suffice for a number of 
desired properties and potential applications whenever the diameter is sufficiently low.
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